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Saša V. Raković∗
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Abstract

In this paper we introduce the concept of optimized robust controlled invariance for a
discrete-time, linear, time-invariant system subject to additive state disturbances. It is as-
sumed that the disturbance is bounded, persistent and acts additively on the state. Novel pro-
cedures for the computation of robustly controlled invariant sets and corresponding controllers
are presented. These results are useful in robust optimal control of constrained discrete-time,
linear, time-invariant system subject to additive state disturbances. Their application to
robust optimal control and robust model predictive control is illustrated.

Keywords: Set invariance, robust control, linear systems, robust time minimal control,
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1 Introduction

The theory of set invariance plays a fundamental role in the control of constrained systems and
has been a subject of research by many authors — see for instance [Aub91, Bla99, Ker00] and the
references therein. An interesting study of the set invariance in non-cooperative games is initiated
and elaborated in [CD00, Car00].

Two important issues are the calculation of the minimal robustly positively invariant (mRPI) set
and the maximal robustly positively invariant (MRPI) set.

The mRPI set is used as a target set in robust time-optimal control [MS97], in , directly or indi-
rectly, the design of robust predictive controllers [ML01, LCRM04, KM03a, KMss, Ker00, CRZ01]
and in understanding the properties of the maximal robustly positively invariant set [KG98,
Kou02].

Despite this wide use of the mRPI and MRPI sets, there are still unresolved issues. For the case
of the mRPI set, there exists no method for the exact computation of the mRPI set, except those
given in [Las93, Sect. 3.3], [MS97, Thm. 3] and [SM98, Sect. II.B], where it is assumed that the
closed-loop system dynamics are nilpotent.

In [Kou02, RKKM03] this assumption is relaxed and a method for computing a robustly positively
invariant approximation of the mRPI set is investigated and a solution is obtained for a specific
case. These results are generalized in [RKKM04]. It is the purpose of this paper to provide
methods for computation of polytopic robustly controlled invariant sets via optimization and to
demonstrate their use in efficient robust model predictive control.
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This paper is organized as follows. Section 2 is concerned with the necessary definitions and the
problem formulation. Section 3 addresses the robust control invariance issue. Section 4 deals with
applications of the results to robust optimal control. In Section 5 we illustrate application of our
results to robust model predictive control. A few illustrative examples are provided in Section 6.
Finally, Section 7 presents conclusions.

2 Preliminary Definitions and Existing Results

Previous research considered the autonomous discrete-time, linear, time-invariant (DLTI) system:

x+ = Acx + w, (2.1)

where x ∈ R
n is the current state, x+ is the successor state and w ∈ R

n is an unknown disturbance
and Ac ∈ R

n×n is a strictly stable matrix (all the eigenvalues of Ac are strictly inside the unit
disk). The disturbance w is persistent, but contained in a convex and compact (i.e. closed and
bounded) set W ⊂ R

n, which contains the origin.

The motivation for this paper is that often one would like to determine whether the state trajectory
of the system will be contained in a set X ⊂ R

n, given any allowable disturbance sequence. For
this purpose, we present the following definition:

Definition 1 (RPI set). [Bla99] The set Ω ⊂ R
n is a robustly positively invariant (RPI) set

of (2.1) if Acx + w ∈ Ω for all x ∈ Ω and all w ∈ W .

Remark 1. It is useful to note that, by definition, Ω is RPI if and only if AcΩ ⊕ W ⊆ Ω. Note
also that Ω is RPI if and only if AcΩ ⊆ Ω ⊖ W .

Definition 2 (Constraint-admissible set). The set Ω ⊂ R
n is a constraint-admissible set if it

is contained in X ⊂ R
n.

Remark 2. Clearly, the set Ω is a constraint-admissible, RPI set if it is contained in X and Ω is
RPI.

An important set in the analysis and synthesis of controllers for constrained systems is the minimal
RPI set:

Definition 3 (mRPI set). The minimal robustly positively invariant (mRPI) set D∞ of (2.1)
is the RPI set of (2.1) that is contained in every closed, RPI set of (2.1).

The properties of the mRPI set D∞ are well-known. It is possible to show [KG98, Sect. IV] that
the mRPI set D∞ exists, is unique, compact and contains the origin. Moreover, D∞ is a limit of
the sequence {Di} where:

Di , AcDi−1 ⊕ W, i ≥ 1 and D0 , {0} (2.2)

where ⊕ denotes the standard Minkowski set addition. It is shown in [KG98, Sect. IV] that {Di}
is a Cauchy sequence and that

D∞ = lim
i→∞

Di (2.3)

where the limit is taken in the Hausdorff metric defined as follows:

Definition 4 (Hausdorff metric). If Ω and Φ are two non-empty, compact sets in R
n, then the

Hausdorff metric is defined as

dp
H(Ω,Φ) , max

{

sup
ω∈Φ

d(ω,Ω), sup
φ∈Ω

d(φ,Φ)

}

, (2.4)

where
d(z,Z) , inf

y∈Z
‖z − y‖p. (2.5)

2



Remark 3. Clearly, Ω = Φ if and only if dp
H(Ω,Φ) = 0. It is also useful to note that dp

H(Ω,Φ) is
the size of the smallest norm-ball that can be added to Ω in order to cover Φ and vice versa, i.e.

dp
H(Ω,Φ) = inf

{

ε ≥ 0
∣

∣ Φ ⊆ Ω ⊕ B
n
p (ε) and Ω ⊆ Φ ⊕ B

n
p (ε)

}

. (2.6)

In [Kou02, RKKM03, RKKM04] a method for computation of an invariant approximation of the
minimal robustly positively invariant set is given. It is shown that the set D(ζ,s) defined by:

D(ζ,s) , (1 − ζ)−1Ds (2.7)

where Ds is defined by (2.2):

Ds =

s−1
⊕

i=0

Ai
cW (2.8)

is an invariant approximation of the minimal robustly positively invariant set D∞ providing that
the couple (ζ, s) ∈ [0, 1) × {0, 1, 2, . . .} is such that the following set inclusion holds:

As
cW ⊆ ζW (2.9)

It is also shown in [RKKM04] that testing whether the set D(ζ,s) is constraint admissible can be
done before its actual computation.

In this note we consider a more general problem in which we do not consider anymore autonomous
system (2.1) but general discrete time, linear, time–invariant system and we provide method for
computation of a robustly controlled invariant set, that is contained in a minimal p norm ball,
and corresponding control law via optimization.

Before proceeding we need to define the robustly controlled invariant set for the system x+ =
f(x, u, w), f(·) : R

n × R
m × R

p 7→ R
n under the constraints given by: (x, u, w) ∈ X × U × W .

Definition 5 (RCI set). The set Ω ⊂ X is a robustly controlled invariant (RCI) set of x+ =
f(x, u, w) if for all x ∈ Ω there exists a u ∈ U such that f(x, u, w) ∈ Ω and all w ∈ W .

We show that our results are better than existing results since our method is based on optimization
procedure. Moreover, we illustrate application of our results to robust optimal control and robust
model predictive control.

3 Robust Controlled Invariance Issue

We consider the following discrete-time linear time-invariant (DLTI) system:

x+ = Ax + Bu + w, (3.1)

where x ∈ R
n is the current state, u ∈ R

m is the current control action x+ is the successor state
and w ∈ R

n is an unknown disturbance. The disturbance w is persistent, but contained in a
convex and compact (i.e. closed and bounded) set W ⊂ R

p, which contains the origin. Matrices
A and B are of appropriate dimensions and couple (A,B) is assumed to be controllable.

If the initial state is x at time 0 (since the system is time-invariant, the current time can always
be taken to be zero), then we denote by φ(k;x, π, w(·)) the solution to (3.1) at time instant k,
given the control policy π , {µ0(·), µ1(·), . . . , µN−1(·)} where for each i, µi(·) : R

n 7→ R
m and

the disturbance sequence w , {w0, w1, . . . , wN−1}.

The first issue that we are interested in is computation of a robustly controlled invariant set for
(3.1). The system satisfies the following equation:

xk+1 = Axk + Buk + wk (3.2)
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If x0 = 0 and the control action at each time k is:

uk = Mk−1w0 + Mk−2w1 + . . . + M1wk−2 + M0wk−1 (3.3)

(i.e. if u0 = 0, u1 = M0w0, u2 = M1w0 + M0w1, ...), then:

xk+1 = (Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)w0

+ (Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w1

+ . . . + (A2 + ABM0 + BM1)wk−2 + (A + BM0)wk−1 + wk (3.4)

Suppose now that the matrices Mi, i = 0, 1, . . . k − 1, k > n satisfy:

Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1 = 0, (3.5)

Such a choice always exists, since (A,B) is controllable and k > n. It follows that:

xk+1 =(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w1

+ . . . + (A2 + ABM0 + BM1)wk−2 + (A + BM0)wk−1 + wk (3.6)

Since each wi ∈ W , xk+1 ∈ Fk if x0 = 0, where:

Fk ,(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)W

⊕ . . . ⊕ (A2 + ABM0 + BM1)W ⊕ (A + BM0)W ⊕ W (3.7)

where ⊕ denotes the standard Minkowski set addition.

We are now ready to establish some of the properties of the set Fk.

Proposition 1. There exists a control law u : Fk 7→ R
m such that Ax+Bu(x)⊕W ⊆ Fk, ∀x ∈ Fk,

i.e. the set Fk is robustly controlled invariant for system (3.1).

Proof. Let x be an arbitrary element of Fk. Since x ∈ Fk it follows by definition of the set Fk:

x =(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w0

+ . . . + (A2 + ABM0 + BM1)wk−3 + (A + BM0)wk−2 + wk−1 (3.8)

for some wi ∈ W, i = 0, 1, . . . k − 1. The last equation can be rewritten in matrix form as:

x = Dw, (3.9)

for some matrix D easily constructed from (3.8) and the vectorized disturbance sequence {w0, w1, . . . wk−1}.
Let Wk , W ×W × . . . ×W and for all x ∈ Fk let w0(x) be the unique solution of the following
quadratic program:

Pw(x) : w0(x) = arg min
w

{|w|2 | w ∈ Wk, Dw = x}, (3.10)

Hence, w0(x) = {w0
0(x), w0

1(x), . . . w0
k−1(x)} and since x ∈ Fk it follows that:

x =(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w
0
0(x)

+ . . . + (A2 + ABM0 + BM1)w
0
k−3(x) + (A + BM0)w

0
k−2(x) + w0

k−1(x) (3.11)

Let the control law u(·) be defined by:

u(x) , Mk−1w
0
0(x) + Mk−2w

0
1(x) + . . . + M1w

0
k−2(x) + M0w

0
k−1(x) (3.12)
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where Mi, i = 0, 1, . . . k − 1 satisfy (3.5). If x ∈ Fk, then:

x+ =Ax + Bu(x) + w

=(Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)w
0
0(x)

+(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w
0
1(x)

+ . . . + (A2 + ABM0 + BM1)w
0
k−2(x) + (A + BM0)w

0
k−1(x) + w (3.13)

where each w0
i (x) ∈ W, i = 0, 1, . . . k − 1 by construction and w ∈ W is arbitrary. Since Mi, i =

0, 1, . . . k − 1 satisfy (3.5) it follows that:

x+ =(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w
0
1(x)

+ . . . + (A2 + ABM0 + BM1)w
0
k−2(x) + (A + BM0)w

0
k−1(x) + w (3.14)

so that x+ = Ax + Bu(x) + w ∈ Fk for all w ∈ W . It follows that Ax + Bu(x) ⊕ W ⊆ Fk for all
x ∈ Fk with u(x) defined by (3.12) and (3.10).

Remark 4. Proposition 1 states that for any k > n the set Fk defined in (3.7), finitely determined
by k, is robustly controlled invariant for system (3.1).

Remark 5. Since the control u(x) = Mkw0(x) and since (3.10) defines a piecewise affine function
w0(·) of state due to the constraint w ∈ Wk, it follows that u(·) is a piecewise affine function of
state x because it is a linear map of a piecewise affine function.

Remark 6. The condition (3.5) can be relaxed as we will show in the sequel.

3.1 Optimized Robust Controlled Invariance

Suppose that the disturbance polytope is an affine map of a hypercube:

W , {w = Ed + f | |d|∞ ≤ η} (3.15)

where d ∈ R
t, E ∈ R

n×t and f ∈ R
n. We demonstrate how for a given index k ≥ n the set Fk and

a corresponding control policy that renders the set Fk, defined via matrices Mi, i = 0, 1, . . . , k−1,
robustly controlled invariant can be computed in a such way that an appropriate norm of Fk is
minimized.

Let Mk , (M0,M1, . . . ,Mk−2,Mk−1), (i.e. Mk is a matrix formed from the matrices Mi so that
Mk = [M ′

0 M ′
1 . . . M ′

k−2 M ′
k−1]

′) and Dk = [Ak−1B Ak−2B . . . AB B]. Let Mk denote the set
of all matrices Mk satisfying condition (3.5):

Mk , {Mk | Ak + DkMk = 0} (3.16)

Recall that the set Fk = Fk(Mk) is defined by (3.7):

Fk(Mk) ,(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)W

⊕ . . . ⊕ (A2 + ABM0 + BM1)W ⊕ (A + BM0)W ⊕ W (3.17)

so that:

Fk(Mk) = (Ak−1 + [Ak−2B Ak−3B . . . AB B 0]Mk)W ⊕ (Ak−2 + [Ak−3B Ak−4B . . . B 0 0]Mk)W

⊕ (A2 + [AB B . . . 0 0 0]Mk)W ⊕ (A + [B 0 . . . 0 0 0]Mk)W ⊕ (In + [0 0 . . . 0 0 0]Mk)W
(3.18)

Let Bp(α) denote the p norm ball in R
n of radius α:

Bp(α) = {x | |x|p ≤ α} (3.19)
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If p = 1,∞ we have
Bp(α) = {x | |x|p ≤ α} = {x | Dx ≤ αd} (3.20)

where D and d are matrices of appropriate dimensions depending on the choice of the norm.

We are interested in computation of a robustly controlled invariant set Fk(Mk) contained in a
’minimal’ p norm ball, i.e. we wish to find F 0

k = Fk(M0
k) where:

(M0
k, α0) = arg min

Mk,α
{α | Fk(Mk) ⊆ Bp(α)} (3.21)

Our next step is to show that our problem can be posed as a linear programming problem if
p = 1,∞ by considering a more general problem:

(M0
k, α0) = arg min

Mk,α
{α | Fk(Mk) ⊆ P (α)}, P (α) = {x | Cx ≤ αc}, α > 0 (3.22)

where P (1) is a compact polytope that contains the origin in its interior and C ∈ R
q×n and c ∈ R

q.
Before proceeding we need to establish some preliminary results. First, we recall the following
definition:

Definition 6 (Support function). The support function of a set Π ⊂ R
n, evaluated at z ∈ R

n,
is defined as

h(Π, z) , sup
π∈Π

zT π. (3.23)

Our main interest in the support function is the well-known fact that the support function of a
set allows one to write equivalent conditions for the set to be a subset of another. In particular:

Proposition 2. Let Π be a non-empty set in R
n and the polyhedron

Ψ =
{

ψ ∈ R
n

∣

∣ fT
i ψ ≤ gi, i ∈ I

}

, (3.24)

where fi ∈ R
n, gi ∈ R and I is a finite index set.

(i) Π ⊆ Ψ if and only if h(Π, fi) ≤ gi for all i ∈ I.

(ii) Π ⊆ int(Ψ) if and only if h(Π, fi) < gi for all i ∈ I.

The following result allows one to compute the support function of a set that is the Minkowski
sum of a finite sequence of linear maps of non-empty, compact sets and is reported in [RKKM04]:

Proposition 3. Let each matrix Lk ∈ R
n×m and each Φk be a non-empty, compact set in R

m for
all k ∈ {1, . . . ,K}. If

Π =

K
⊕

k=1

LkΦk, (3.25)

then

h(Π, z) =

K
∑

k=1

max
φ∈Φk

(zT Lk)φ. (3.26)

Furthermore, if Φk = B∞(1), then

max
φ∈Φk

(zT Lk)φ = |LT
k z|1. (3.27)

Let 1t denote vector of ones of length t. Let abs(A) denote the matrix whose elements are
the absolute values of the corresponding components of the matrix A. It is well known, see for
example [KM03b], that:

max
d

{a′d | |d|∞ ≤ η} = η|a|1.

The following observation is a consequence of Proposition 3 and the results are reported in [KM03b,
KM04].
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Corollary 1. Let matrices A ∈ R
n×n, C ∈ R

q×n, D ∈ R
n×p and M ∈ R

p×n and let w ∈ W
where W = {w = Ed + f | |d|∞ ≤ η} and E ∈ R

n×t and f ∈ R
n. Then

max
w∈W

C(A + DM)w = ηabs(C(A + DM)E)1t + C(A + DM)f (3.28)

where the maximization is taken row-wise. Moreover, there exists a matrix L ∈ R
q×t such that:

−L ≤ C(A + DM)E ≤ L (3.29)

where the inequality is element-wise, and the solution of (3.28) is:

max
w∈W

C(A + DM)w = ηL1q + C(A + DM)f (3.30)

Let
Ω , {(Mk, α) | Mk ∈ Mk, Fk(Mk) ⊆ P (α), α > 0} (3.31)

where Fk(Mk) is defined in (3.17) and P (α) is defined (3.22). Consider the following minimization
problem:

Pk : (M0
k, α0) = arg min

Mk,α
{α | (Mk, α) ∈ Ω} (3.32)

Proposition 4. The minimization problem Pk defined in (3.32) is a linear programming problem.

Proof. The set inclusion Fk(Mk) ⊆ P (α) holds true if and only if:

Cx ≤ αc, ∀x ∈ Fk(Mk) (3.33)

or in terms of support functions
max

x∈Fk(Mk)
Cx ≤ αc, (3.34)

where the maximization is taken row-wise. Now, any arbitrary x ∈ Fk(Mk) can be written as:

x = (Ak−1 + [Ak−2B Ak−3B . . . AB B 0]Mk)w0 + (Ak−2 + [Ak−3B Ak−4B . . . B 0 0]Mk)w1

+ (A + [B 0 . . . 0 0 0]Mk)wk−2 + (In + [0 0 . . . 0 0 0]Mk)wk−1 (3.35)

where each wi ∈ W, i = 0, 1, 2, . . . , k − 1 it follows, by Proposition 3, that:

max
x∈Fk(Mk)

Cx = max
w0∈W

C(Ak−1 + [Ak−2B Ak−3B . . . AB B 0]Mk)w0

+ max
w1∈W

C(Ak−2 + [Ak−3B Ak−4B . . . B 0 0]Mk)w1

+ . . .

+ max
wk−2∈W

C(A + [B 0 . . . 0 0 0]Mk)wk−2

+ max
wk−1∈W

C(In + [0 0 . . . 0 0 0]Mk)wk−1 (3.36)

From Corollary 1 it follows that there exist a set of matrices Li ∈ R
q×t, i = 0, 1, . . . , k − 1 such

that:

max
x∈Fk(Mk)

Cx =

k−1
∑

i=0

(ηLi1t + C(Ai + DiMk)f) (3.37)

where each Di, i = 0, 1, . . . , k− 1, is readily constructed from (3.36) and Λk , {L0, L1, . . . , Lk−1}
and each Li satisfies:

−Li ≤ C(Ai + DiMk)E ≤ Li, i = 0, 1, . . . k − 1 (3.38)

By the basic properties of the Kronecker product it follows that the set inclusion Fk(Mk) ⊆ P (α)
can be expressed as a set of linear inequalities in (vec(Mk), vec(Λk), α). Similarly, the condition
Mk ∈ Mk is a set of linear equalities in (vec(Mk), vec(Λk), α). Hence, since the cost function
in the minimization problem Pk is a linear function of (vec(Mk), vec(Λk), α), it follows that the
minimization problem Pk is a linear programming problem.
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Remark 7. Let γ , (vec(Mk), vec(Λk), α) and let:

Γ , {γ | Mk ∈ Mk,

k−1
∑

i=0

(ηLi1t + C(Ai + DiMk)f) ≤ αc,

− Li ≤ C(Ai + DiMk)E ≤ Li, i = 0, 1, . . . k − 1, α > 0} (3.39)

The minimization problem Pk is then readily transformed into a linear programming problem:

Pk : min
γ

{α | γ ∈ Γ} (3.40)

3.2 Optimized Robust Controlled Invariance Under Constraints

Suppose now that the system (3.1) is subject to constraints:

x ∈ X = {x | Cxx ≤ cx}, u ∈ U = {u | Cuu ≤ cu} (3.41)

where X and U are polyhedral and polytopic sets respectively and both contain the origin as an
interior point and where Cx ∈ R

qx×n and cx ∈ R
qx and Cu ∈ R

qu×m and cu ∈ R
qu . We illustrate

that in this case, one can formulate a linear programming problem, similar to the minimization
problem Pk, whose feasibility establishes existence of a robustly controlled invariant set Fk(Mk),
i.e. x ∈ X and u(x) ∈ U and Ax + Bu(x) ⊕ W ⊆ Fk(Mk) for all x ∈ Fk(Mk). Before proceeding
recall that, the control law u(·) is defined by (3.10) and (3.12):

u(x) = Mk−1w
0
0(x) + Mk−2w

0
1(x) + . . . + M1w

0
k−2(x) + M0w

0
k−1(x), ∀x ∈ Fk(Mk) (3.42)

In order to ensure satisfaction of the state and control constraints (3.41) we impose the following
constraints:

x ∈ αX, u(x) ∈ βU, ∀x ∈ Fk(Mk) (3.43)

where (α, β) ∈ (0, 1)× (0, 1). This constraints can be written in terms of set inclusions as follows:

Fk(Mk) ⊆ αX, U(Mk) ⊆ βU, U(Mk) , Mk−1W ⊕ . . . ⊕ M1W ⊕ M0W (3.44)

where αX = {x | Cxx ≤ αcx} and βU = {u | Cuu ≤ βcu}.

By Corollary 1 we have the following:

Corollary 2. Let C ∈ R
q×m and M ∈ R

m×n be two matrices and let W = {w = Ed+f | |d|∞ ≤ η}
and E ∈ R

n×t and f ∈ R
n. Then:

max
w∈W

CMw = ηabs(CME)1t + CMf (3.45)

where the maximization is taken row-wise. Moreover, there exists a matrix T ∈ R
q×t such that:

−T ≤ CME ≤ T (3.46)

where the inequality is element-wise, and the solution of (3.45) is:

max
w∈W

CMw = ηT1t + CMf (3.47)

Let now:

Ω̄ , {(Mk, α, β, δ) | Mk ∈ Mk, Fk(Mk) ⊆ αX, U(Mk) ⊆ βU,

(α, β) ∈ (0, 1) × (0, 1), α + β ≤ δ} (3.48)

where Fk(Mk) is given by (3.17) and U(Mk) by (3.44).

Consider the following minimization problem:

P̄k : (M0
k, α0, β0, δ0) = arg min

Mk,α,β,δ
{δ | (Mk, α, β, δ) ∈ Ω̄} (3.49)
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Proposition 5. The minimization problem P̄k is a linear programming problem.

The Proof of this results follows the same arguments emphasized in the proof of Proposition 4 and
uses Corollary 2.

Remark 8. It follows from Corollary 2 that in this case a matrix Θk , {T0, T1, . . . Tk−1} has to
be introduced to reflect the inclusion corresponding to hard control constraints U(Mk) ⊆ βU into
the set of linear inequalities similarly to (3.37)–(3.38). Since

max
x∈Fk(Mk)

Cuu(x) = max
w0∈W

Cu[0 0 . . . 0 I]Mkw0

+ max
w1∈W

Cu[0 0 . . . I 0]Mkw1

+ . . .

+ max
wk−2∈W

Cu[0 I . . . 0 0]Mkwk−2

+ max
wk−1∈W

Cu[I 0 . . . 0 0 0]Mkwk−1

It follows by Corollary 2 that there exists Θk , {T0, T1, . . . , Tk−1} such that

max
x∈Fk(Mk)

Cuu(x) =

k−1
∑

i=0

(ηTi1t + CuSiMkf) (3.50)

where the maximization is taken row-wise and each Ti ∈ R
qu×t satisfies:

−Ti ≤ CuSiMkE ≤ Ti, i = 0, 1, . . . k − 1 (3.51)

where the inequality is element-wise and Si is appropriate selection matrix of the form Si =
[0 0 . . . I . . . 0 0].

Remark 9. Let γ , (vec(Mk), vec(Λk), vec(Θk), α, β, δ) and let:

Γ̄ , {γ | Mk ∈ Mk,
k−1
∑

i=0

(ηLi1t + Cx(Ai + DiMk)f) ≤ αcx,

− Li ≤ Cx(Ai + DiMk)E ≤ Li, i = 0, 1, . . . k − 1,

k−1
∑

i=0

(ηTi1t + CuSiMkf) ≤ βcu,

− Ti ≤ CuSiMkE ≤ Ti, i = 0, 1, . . . k − 1,

(α, β) ∈ (0, 1) × (0, 1), qaα + qbβ ≤ δ} (3.52)

where qa and qb are weights corresponding to the contraction of the state and control constraints.
The minimization problem P̄k is then readily transformed into a linear programming problem:

P̄k : min
γ

{δ | γ ∈ Γ̄} (3.53)

The following result is a consequence of the discussion above.

Proposition 6. There exists a robustly controlled invariant set Fk = Fk(M0
k) and corresponding

control law u(·) defined by (3.12) and (3.10) with Mk = M0
k satisfying the state and control

constraints if and only if the minimization problem P̄k defined by (3.53) and (3.52) is feasible.
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3.3 Relaxing Condition (3.5)

Condition (3.5) can be relaxed as follows. Recall that W = {w = Ed + f | |d|∞ ≤ η} where
E ∈ R

n×t and f ∈ R
n and suppose that the polytopic description of is W = {w | Cww ≤ cw}

where Cw ∈ R
qw×n and cw ∈ R

qw . Furthermore, it is assumed that the origin is an interior point
of W . The condition (3.5) can be replaced by the following condition:

(Ak + [Ak−1B Ak−2B . . . AB B]Mk)W ⊆ ϕW (3.54)

where ϕ ∈ [0, 1), or equivalently in terms of support functions:

max
w∈W

Cw(Ak + [Ak−1B Ak−2B . . . AB B]Mk)w ≤ ϕcw (3.55)

where the maximization is taken row-wise. In this case, we consider the set F(ϕ,k) defined by:

F(ϕ,k) , (1 − ϕ)−1Fk (3.56)

We can establish some properties of the set F(ϕ,k).

Proposition 7. There exists a control law u : F(ϕ,k) 7→ R
m such that Ax + Bu(x) ⊕ W ⊆

F(ϕ,k), ∀x ∈ F(ϕ,k), i.e. the set F(ϕ,k) is robustly controlled invariant for system (3.1).

Proof. Let x be an arbitrary element of F(ϕ,k). Since x ∈ F(ϕ,k) it follows by definition of the set
F(ϕ,k):

x =(1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w0

+ . . . + (1 − ϕ)−1(A2 + ABM0 + BM1)wk−3 + (1 − ϕ)−1(A + BM0)wk−2 + (1 − ϕ)−1wk−1

(3.57)

for some wi ∈ W, i = 0, 1, . . . k − 1. The last equation can be rewritten in matrix form as:

x = Dw, (3.58)

for some matrix D easily constructed from (3.57) and the vectorized disturbance sequence {(1 −
ϕ)−1w0, (1−ϕ)−1w1, . . . (1−ϕ)−1wk−1}. Let Wk , (1−ϕ)−1W × (1−ϕ)−1W × . . .× (1−ϕ)−1W
and for all x ∈ F(ϕ,k) let w0(x) be the unique solution of the following quadratic program:

Pw(x) : w0(x) = arg min
w

{|w|2 | w ∈ Wk, Dw = x}, (3.59)

Hence, w0(x) = {(1 − ϕ)−1w0
0(x), (1 − ϕ)−1w0

1(x), . . . (1 − ϕ)−1w0
k−1(x)} and since x ∈ F(ϕ,k) it

follows that:

x =(1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w
0
0(x)

+ . . . + (1 − ϕ)−1(A2 + ABM0 + BM1)w
0
k−3(x) + (1 − ϕ)−1(A + BM0)w

0
k−2(x) + (1 − ϕ)−1w0

k−1(x)
(3.60)

Let the control law u(·) be defined by:

u(x) , (1−ϕ)−1Mk−1w
0
0(x)+(1−ϕ)−1Mk−2w

0
1(x)+. . .+(1−ϕ)−1M1w

0
k−2(x)+(1−ϕ)−1M0w

0
k−1(x)
(3.61)

where Mi, i = 0, 1, . . . k − 1 satisfy (3.54). If x ∈ F(ϕ,k), then:

x+ =Ax + Bu(x) + w

=(1 − ϕ)−1(Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)w
0
0(x)

+(1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)w
0
1(x)

+ . . . + (1 − ϕ)−1(A2 + ABM0 + BM1)w
0
k−2(x) + (1 − ϕ)−1(A + BM0)w

0
k−1(x) + w (3.62)
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where each w0
i (x) ∈ W, i = 0, 1, . . . k − 1 by construction and w ∈ W is arbitrary. It follows that:

x+ ∈(1 − ϕ)−1(Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)W

⊕(1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)W

⊕ . . . ⊕ (1 − ϕ)−1(A2 + ABM0 + BM1)W ⊕ (1 − ϕ)−1(A + BM0)W ⊕ W (3.63)

but Mi, i = 0, 1, . . . k − 1 satisfy (3.54) so that

(Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)W ⊆ ϕW

and consequently

(1 − ϕ)−1(Ak + Ak−1BM0 + Ak−2BM1 + . . . + ABMk−2 + BMk−1)W ⊆ ϕ(1 − ϕ)−1W

Thus,

x+ ∈(1 − ϕ)−1ϕW ⊕ (1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)W

⊕ . . . ⊕ (1 − ϕ)−1(A2 + ABM0 + BM1)W ⊕ (1 − ϕ)−1(A + BM0)W ⊕ W (3.64)

Since (1 − ϕ)−1ϕW ⊕ W = (1 − ϕ)−1W it follows that:

x+ ∈(1 − ϕ)−1(Ak−1 + Ak−2BM0 + Ak−3BM1 + . . . + ABMk−3 + BMk−2)W

⊕ . . . ⊕ (1 − ϕ)−1(A2 + ABM0 + BM1)W ⊕ (1 − ϕ)−1(A + BM0)W ⊕ (1 − ϕ)−1W (3.65)

so that x+ = Ax + Bu(x) + w ∈ F(ϕ,k) for all w ∈ W . It follows that Ax + Bu(x) ⊕ W ⊆ F(ϕ,k)

for all x ∈ F(ϕ,k) with u(x) defined by (3.61) and (3.59).

It follows from Corollary 1 that condition (3.54) is affine in Mk because:

max
w∈W

Cw(Ak + [Ak−1B Ak−2B . . . AB B]Mk)w =

max
w∈W

Cw(Ak + DkMk)w = ηabs(Cw(Ak + DkMk)E)1t + Cw(Ak + DkMk)f (3.66)

where the maximization is taken row-wise, so that

max
w∈W

Cw(Ak + [Ak−1B Ak−2B . . . AB B]Mk)w = ηY 1t + Cw(Ak + DkMk)f (3.67)

where Y ∈ R
qw×t and:

−Y ≤ Cw(Ak + [Ak−1B Ak−2B . . . AB B]Mk)E ≤ Y (3.68)

where the inequality is element-wise.

If there are constraints (3.41) imposed on system(3.1) we can formulate the linear programming
problem for establishing the existence of the set F(ϕ,k) = F(ϕ,k)(Mk) that is constraint admissible,
as we illustrate next.

We note that
U(ϕ,k)(Mk) = (1 − ϕ)−1U(Mk) (3.69)

and
F(ϕ,k)(Mk) = (1 − ϕ)−1Fk(Mk) (3.70)

where Fk(Mk) and U(Mk) are given by (3.17) and (3.44) respectively. We require the following
set inclusions to hold:

U(ϕ,k)(Mk) ⊆ U, F(ϕ,k)(Mk) ⊆ X (3.71)
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The last equation is equivalent to:

(1 − ϕ)−1U(Mk) ⊆ U, (1 − ϕ)−1Fk(Mk) ⊆ X (3.72)

Since X, U , Fk(Mk) and U(Mk) are convex sets, each containing the origin as an interior point,
we have that (3.72) is equivalent to:

U(Mk) ⊆ (1 − ϕ)U, Fk(Mk) ⊆ (1 − ϕ)X (3.73)

In order to ensure satisfaction of (3.71) we require:

U(Mk) ⊆ βU, Fk(Mk) ⊆ αX, β ≤ 1 − ϕ, α ≤ 1 − ϕ (3.74)

and as before (α, β, ϕ) ∈ (0, 1) × (0, 1) × [0, 1). Finally, we are ready to formulate a linear pro-
gramming problem similar to the one in Remark 9.

Remark 10. Let γ , (vec(Mk), vec(Λk), vec(Y ), vec(Θk), α, β, δ, ϕ) and let:

Γ̄ , {γ |

k−1
∑

i=0

(ηLi1t + Cx(Ai + DiMk)f) ≤ αcx,

− Li ≤ Cx(Ai + DiMk)E ≤ Li, i = 0, 1, . . . k − 1,

k−1
∑

i=0

(ηTi1t + CuSiMkf) ≤ βcu,

− Ti ≤ CuSiMkE ≤ Ti, i = 0, 1, . . . k − 1,

ηY 1t + Cw(Ak + DkMk)f ≤ ϕcw,

− Y ≤ (Cw(Ak + Dk)Mk)E ≤ Y,

(α, β, ϕ) ∈ (0, 1) × (0, 1) × [0, 1),

α + ϕ ≤ 1, β + ϕ ≤ 1, qaα + qbβ + qpϕ ≤ δ} (3.75)

where qa, qb and qp are weights corresponding to the contraction of the state, control constraints
and the disturbance polytope. The minimization problem P̄k we consider is then readily trans-
formed into a linear programming problem:

P̄k : min
γ

{δ | γ ∈ Γ̄} (3.76)

The following result is a consequence of the discussion above.

Proposition 8. There exists a robustly controlled invariant set F(ϕ,k) = (1 − ϕ)−1Fk(M0
k) and

corresponding control law u(·) defined by (3.59) and (3.60) with Mk = M0
k satisfying the state

and control constraints if and only if the minimization problem P̄k defined by (3.75) and (3.76) is
feasible.

Remark 11 (Generalization of Optimized Robust Controlled Invariance). The above results can
be extended to the case when the disturbance polytope is an arbitrary polytope W , {w ∈
R

n | Cww ≤ cw} that contains the origin in its interior. It is also possible to extend the results to
the case when the considered norm is p = 2. The details will be provided elsewhere.

Remark 12. We note that one can easily modify the cost function that is penalized. For instance,
an appropriate choice is positively weighted two norm of the decision variable γ that yields a
unique solution, since in this case problem becomes quadratic programming problem of the form

min
γ

{|γ|2Q | γ ∈ Γ̄},

where Q is positive definite and it represents appropriate weights.

Corollary 3. Suppose that the minimization problem P̄k defined in (3.75) and (3.76) is feasible for
some k ∈ {0, 1, 2, . . .} and the optimal value of δk is δ0

k then for all integers s ≥ k the minimization
problem P̄s, where k is replaced with s in (3.75) and (3.76), is also feasible and the corresponding
optimal value of δs satisfies δ0

s ≤ δ0
k.
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3.4 Comparison with Existing Methods

In order to demonstrate advantages of our method over existing methods briefly reviewed in Section
2, we modify the results of Theorem 1 in [KM03b, KM04] and proceed as follows. Let

K , {K ∈ R
m×n | | λmax(A + BK)| < 1} (3.77)

where λmax(A) denotes the largest eigenvalue of the matrix A. Let K ∈ K and let:

D∞(K) = lim
i→∞

Di(K) (3.78)

where Di(K) is defined by (2.2):

Di(K) , (A + BK)Di−1(K) ⊕ W, i ≥ 1 and D0(K) , {0} (3.79)

Since, as is well known that generally D∞(K) is impossible to compute , let:

D(ζ(K),s(K))(K) , (1 − ζ(K))−1Ds(K)(K) (3.80)

where Ds(K)(K) is defined by (3.79) so that:

Ds(K)(K) =

s(K)−1
⊕

i=0

(A + BK)iW (3.81)

So that D(ζ(K),s(K))(K) is the best possible invariant approximation1 of the minimal robustly
positively invariant set D∞(K). We remark that the couple (ζ(K), s(K)) ∈ [0, 1)×{0, 1, 2, . . .} is
such that the following set inclusion holds true:

(A + BK)s(K)W ⊆ ζ(K)W (3.82)

Let:

K , {K ∈ K | D(ζ(K),s(K))(K) ⊆ αX, KD(ζ(K),s(K))(K) ⊆ βU, (α, β) ∈ (0, 1) × (0, 1)} (3.83)

where X and U are state and control constraints and where it assumed that D(ζ(K),s(K))(K) is
the best possible approximation of D∞(K) in view of discussion above (See (3.80)–(3.82)). Given
any K ∈ K let

α(K) , min
α∈(0,1)

{α | D(ζ(K),s(K))(K) ⊆ αX}

β(K) , min
β∈(0,1)

{β | KD(ζ(K),s(K))(K) ⊆ βU} (3.84)

Given any s ∈ {0, 1, . . .} let

Ks = [K ′ K(A + BK)′ . . . K(A + BK)s−2′ K(A + BK)s−1′]′ (3.85)

and note that for any integer k ≤ s:

(A + BK)k = Ak + [Ak−1B Ak−2B . . . AB B 0 . . . 0]Ks (3.86)

Let also:

Ω̄k , {(Mk, α, β, δ, ϕ) | Fk(Mk) ⊆ αX, U(Mk) ⊆ βU

(Ak + [Ak−1B Ak−2B . . . AB B]Mk)W ⊆ ϕW,

(α, β, ϕ) ∈ (0, 1) × (0, 1) × [0, 1),

α + ϕ ≤ 1, β + ϕ ≤ 1, qaα + qbβ + qpϕ ≤ δ} (3.87)

where Fk(Mk) and U(Mk) are defined in (3.69) and (3.70).

We can now state the following result that follows easily from the discussion above:

1The term ’the best possible invariant approximation’ is used somehow loosely and is related to the finite
arithmetic precision involved in the corresponding computations.
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Proposition 9. Let K ∈ K, where K is defined in (3.83), and the couple (ζ(K), s(K)) ∈ [0, 1) ×
{0, 1, 2, . . .} satisfies (3.82). Then (Ks(K), α(K), β(K), qaα(K)+ qbβ(K)+ qpζ(K), ζ(K)) satisfies
(Ks(K), α(K), β(K), qaα(K) + qbβ(K) + qpζ(K), ζ(K)) ∈ Ω̄s(K) where Ω̄k is defined in (3.87).

The proof of this results follows from straight–forward verification that (Ks(K), α(K), β(K), qaα(K)+
qbβ(K) + qpζ(K), ζ(K)) ∈ Ω̄s(K).

Remark 13. Proposition 9 and Corollary 3 imply that for any K ∈ K and for all s ≥ s(K) the
minimization problem P̄s

P̄s : (M0
s, α

0, β0, δ0, ϕ0) = arg min
(Mk,α,β,δ,ϕ)

{δ | (Mk, α, β, δ, ϕ) ∈ Ω̄s} (3.88)

yields δ0 that is smaller or equal than the value of qaα(K) + qbβ(K) + qpζ(K).

In view of the previous remark we conclude that our method does at least as well as existing
methods. However recalling remark 5, it is easy to conclude that our method improves upon
existing methods. Moreover, the crucial advantage of our method lies in the fact that it is easy to
incorporate hard state and control constraints into the optimization problem (See (3.75)–(3.76))
and obtain a solution by a single optimization problem in contrast to the existing methods of
viability theory[Aub91], where the constraints are not handled in the most efficient way and
corresponding set computations are done through recursive set calculations. Moreover there exists
no efficient method for computation of a K ∈ K such that K ∈ K, apart from straight forward
computations and testing whether K ∈ K. This advantages will be illustrated by an appropriate
numerical example2.

3.5 Comparison – Illustrative Example

In order to illustrate our results we consider the second order systems:

x+ =

[

1 1
0 1

]

x +

[

1
1

]

u + w (3.89)

with additive disturbance:
W ,

{

w ∈ R
2 | |w|∞ ≤ 1

}

. (3.90)

The following set of hard state and control constraints is required to be satisfied:

X = {x | − 3 ≤ x1 ≤ 1.85, −3 ≤ x2 ≤ 3, x1 + x2 ≥ −2.2}, U = {u | |u| ≤ 2.4} (3.91)

where xi is the ith coordinate of a vector x.

In the first attempt we obtain the closed loop dynamics by applying three various state feedback
control laws to a second order double integrator example (3.89):

K1 = −[0.72 0.98],

K2 = −[0.96 1.24],

K3 = −[1 1] (3.92)

and compute the corresponding sets D(ζ(K),s(K))(K). The invariant sets D(ζ(K),s(K))(K) computed
by using methods of [Kou02, RKKM03, RKKM04] are shown in Figure 1.

Only the set D(ζ(K3),s(K3))(K3) is contained in ∞ norm ball B∞(2) but all of the computed sets
violate the state constraints as illustrated in Figure 1. We also report that for these state feedback
controllers the corresponding control polytopes are:

U(K1) = {u | |u| ≤ 2.4680},

U(K2) = {u | |u| ≤ 6.4578},

U(K3) = {u | |u| ≤ 3}, (3.93)

2In fact, a modification of the optimization problem we consider provides a way for computing K ∈ K.
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Figure 1: Invariant Approximations of D∞(Ki): Sets D(ζ(Ki),s(Ki))(Ki), i = 1, 2, 3

where U(K) , KD(ζ(K),s(K))(K) so that the control constraints are also violated.

By solving the optimization problem P̄k defined in (3.52)–(3.53) we computed the invariant sets
Fki(Mk

0
i ), i = 1, 2, 3 and they are shown in Figure 2.
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Figure 2: Invariant Sets Fki(Mk
0
i ), i = 1, 2, 3

The optimization problem P̄k was posed with the following design parameters:

k1 = 5, qα = qβ = 1,

k2 = 5, qα = 0, qβ = 1,

k3 = 5, qα = 1, qβ = 0, (3.94)

The optimization problem P̄k yielded the following matrices Mk
0
i , i = 1, 2, 3:

Mk
0
1 =













−0.5 −1
0.2378 0
0.1139 0
0.0590 0
0.0894 0













,

Mk
0
2 =













−0.4875 −1
0.2199 0
0.1154 0
0.0596 0
0.0926 0













,

Mk
0
3 =













−0.5038 −1
0.2456 0
0.1132 0
0.0521 0
0.0930 0













(3.95)
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and the corresponding control polytopes are:

U(Mk
0
1) = {u | |u| ≤ 2},

U(Mk
0
2) = {u | |u| ≤ 1.9750},

U(Mk
0
3) = {u | |u| ≤ 1.9750}, (3.96)

All the sets constructed from the solution of the optimization problem P̄k satisfy state and control
constraints as it can be seen from Figure 2 and (3.96). Note that if k was increased there is a
possibility that better results would be obtained.

To make comparison in this simple example as fair as possible we consider also the following three
state feedback control laws constructed from the first raw of the optimized matrices Mk:

K4 = −[0.5 1],

K5 = −[0.4875 1],

K6 = −[0.5038 1] (3.97)

The corresponding sets D(ζ(K),s(K))(K) are shown in Figure 3. The corresponding control poly-
topes are:

U(K4) = {u | |u| ≤ 2},

U(K5) = {u | |u| ≤ 1.975},

U(K6) = {u | |u| ≤ 2.076}, (3.98)

so that the control constraints are satisfied, but unfortunately all of the computed sets violate the
state constraints.
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Figure 3: Invariant Approximations of D∞(Ki): Sets D(ζ(Ki),s(Ki))(Ki), i = 4, 5, 6

This simple example and Proposition 9 indicate clear superiority of our method if system is subject
to state and control constraints.

4 Application to Robust Optimal Control

Consider the problem of controlling system (3.1) subject to additive disturbances and hard state
and control constraints defined in (3.41) over finite horizon of length N and suppose that the
additional constraint is:

xN ∈ Xf ⊆ X (4.1)

where Xf is a terminal constraint assumed to be polytopic containing the origin as an interior

point and xN = φ(N ;x, π,w), where π is the control policy π , {µ0(·), µ1(·), . . . , µN−1(·)} applied
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to system (3.1). Solution to this problem requires search over all control policies π belonging to
the set ΠN (x) defined by:

ΠN (x) , {π | (φ(i;x, π,w), µi(φ(i;x, π,w))) ∈ X × U, i = 0, 1, . . . , N − 1,

φ(N ;x, π,w) ∈ Xf , ∀w ∈ W}. (4.2)

where w = {w0, w1, . . . , wN−1} and W = W × W × . . . × W .

Determination of a control policy π ∈ ΠN (x) is usually prohibitively difficult and an appropriate
parameterization of the policy π is necessary in order to obtain computationally tractable problem.
Recent results in robust optimization [Gus02, BTGGN02] that have been applied to model predic-
tive control in [KM03b, KM04, KA03, KA04, L0̈3b, L0̈3a, vHB03b, vHB03a, vHB02a, vHB02b]
showed that an appropriate control policy π can be obtained if feedback laws µi(·) in policy π are
parametrized as follows:

µ0(x) = v0 and µi(x) = vi +

i−1
∑

j=0

Mi,jwj , i ∈ {1, 2, . . . , N − 1} (4.3)

where {wj}, j ∈ {0, 1, 2, . . . , N − 1} is the actual disturbance realization.

It is shown that with this parametrization one can formulate the convex programming problem,
depending on the choice of the cost to be minimized, in which decision variables are the nominal
control sequence v , {v0, v1, . . . , vN−1} and the matrix M, specifying the feedback component of
the control policy π, defined by:

M ,















0 0 . . . . . . 0
M1,0 0 . . . . . . 0

...
...

. . .
...

...
MN−2,0 MN−2,1 . . . . . . 0
MN−1,0 MN−1,1 . . . MN−1,N−2 0















(4.4)

Properties of this parameterization are studied in more detail in [KM03b, KM04]. We note that
the resulting optimization problem is obviously tractable, but demanding since, in the model
predictive framework, computation of v and M have to be repeated at each sample time. We aim
to exploit the results of the previous section to improve computational efficiency and to preserve
the desired properties of this parametrization as much as possible.

Our standing assumption is that there exists a matrix Ms such that the minimization programming
problem P̄s defined in Remark 10 (or Remark 9) , in which the state constraints are replaced by
the terminal set constraints, is feasible for some s ∈ {0, 1, 2, . . .} yielding the set F (ϕ, s) and the
control policy, rendering the set F (ϕ, s) robustly controlled invariant, both defined via matrices
Mi, i = 0, 1, . . . , s − 1.

Remark 14. We observe that we do not require, in general, that s = N and allow s to be an
arbitrary finite integer. Thus s can be also treated as a controller design variable.

Let the set F (ϕ, s) and the matrix Ms , {M0,M1, . . . ,Ms−1} be constructed from the solution
of the minimization programming problem P̄s and let, with some abuse of notation:

F , F (ϕ, s) and U(F ) , U(ϕ,k)(Mk) (4.5)

where F (ϕ, s) and U(ϕ,k)(Mk) are defined by (3.69) and (3.70).

Let us define an appropriate reference system that corresponds to the nominal part of the system
(3.1) by:

z+ = Az + Bv (4.6)
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If the initial state is z at time 0 then we denote by φ̄(k; z, v) the solution to (4.6) at time instant
k, given the control sequence v , {v0, v1 . . . vN−1}. We define the set of tighter constraints for
system (4.6)

Z , X ⊖ F, V , U ⊖ U(F ) and Zf , Xf ⊖ F (4.7)

where ⊖ denotes the standard Minkowski (Pontryagin) Set Difference.

Remark 15. The solution of the problem P̄s allows for computation of sets Zf and V by a simple
algebraic manipulation and the set Z is easily computed by solving a sequence of linear pro-
gramming problems. If Xf = X then Z = Zf and Z and V are obtained by a simple algebraic
manipulation.

Let the control action applied to (3.1) be defined by:

u = v + t(e) (4.8)

where e , x − z is the error and it satisfies the following difference equation:

e+ = Ae + Bt(e) + w (4.9)

Suppose that e ∈ F and let t(e) be defined by:

t(e) , Ms−1w
0
0(e) + Ms−2w

0
1(e) + . . . + M1w

0
s−2(e) + M0w

0
s−1(e) (4.10)

where, now w0(e) = {w0
0(e), w

0
1(e), . . . , w

0
s−1(e)} is the solution of the following quadratic program:

Pw(e) : w0(e) = arg min
w

{|w|2 | w ∈ W,Dw = e}, (4.11)

where, matrices Mi, i = 0, 1, . . . , s − 1 and the matrix D and the set W are constructed as in
proof of Proposition 7.

We can now state the following result similar to the one reported in [ML01], but more general:

Proposition 10. Let x ∈ z ⊕ F and let u = v + t(e), then x+ ∈ z+ ⊕ F .

Proof.

x+ = Ax + Bu + w = A(z + e) + B(v + t(e)) + w = Az + Bv + Ae + Bt(e) + w = z+ + e+

By proposition 7, since e ∈ F , e+ ∈ F so that x+ ∈ z+ ⊕ F .

Let VN (x) be defined as follows:

VN (x) , {(v, z) | (φ̄(k; z,v), vk) ∈ Z×V, k = 0, 1, . . . , N −1, φ̄(N ; z,v) ∈ Zf , x ∈ z⊕F} (4.12)

Let the couple (v, z) be an arbitrary element of VN (x) and let the control action applied to system
(3.1) at time i be defined by:

µi(xi) = vi(z) + t(ei), ei = xi − zi (4.13)

where xi = φ(i;x, π,w), π , {µ0(·), µ1(·), . . . , µN−1(·)} and zi = φ̄(i, z, v) and t(·) is defined in
(4.10) and (4.11).

Proposition 10 allows as to state the following result:

Proposition 11. Let the couple (v, z) be an arbitrary element of VN (x) and suppose that the
control policy π , {µ0(·), µ1(·), . . . , µN−1(·)}, where each µi(·) is defined by (4.13), is applied to
actual system (3.1). Then φ(i;x, π,w) ∈ φ̄(i; z, v)⊕ F for all i = {0, 1, 2, . . . , N} and all w ∈ W.

Proof. The proof follows trivially from Proposition 10 by induction.
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Remark 16. Since Z, Zf and V are defined by (4.7) it follows from Proposition 11 that φ(i;x, π,w) ∈
X, µi(φ(i;x, π,w)) ∈ U for all i = 0, 1, . . . N − 1 and φ(N ;x, π,w) ∈ Xf .

Remark 17. Computation of the feedback component t(e) can be even further simplified by mem-
orizing the actual disturbances or by solving a corresponding parametric quadratic programming
problem in order to obtain explicit solution for the ’optimal’ disturbance sequences used in the
feedback component of the control policy π.

The robust optimal control problem we consider is minimization of an appropriate cost function
with respect to (v, z) subject to constraints (v, z) ∈ VN (x). Appropriate cost function can be
defined as follows:

VN (v, z) ,

N−1
∑

i=0

ℓ(zi, vi) + Vf (zN ), (4.14)

where for all i, zi := φ̄(i; z,v) and ℓ(·) is the stage cost and Vf (·) is the terminal cost.

The stage cost ℓ(·) and the terminal cost Vf (·) can be chosen to be :

ℓ(x, u) , ‖Qx‖p + ‖Ru‖p, p = 1, 2,∞ (4.15a)

Vf (x) , ‖Px‖p, p = 1, 2,∞ (4.15b)

where P , Q and R are matrices of suitable dimensions. With this choice of the cost function the
resulting optimal control problem is standard linear or quadratic programming problem3. For
instance, if p = 2 and Q > 0, P > 0 and R > 0 the resulting optimal control problem is:

PN (x) : min
v,z

{VN (v, z) |(v, z) ∈ VN (x)} (4.16)

and its unique minimizer is:

(v0(x), z0(x)) , arg min
v,z

{VN (v, z) |(v, z) ∈ VN (x)} (4.17)

The set of the states such that the optimal control problem PN (x) is feasible (the domain of the
value function V 0

N (·), the controllability set) is clearly:

XN , ProjXVN (x) (4.18)

Remark 18. It is clear that the set sequence {Xi} where each Xi , ProjXVi(x) is a non-decreasing
set sequence, i.e. Xi ⊆ Xi+1 for all i, providing that Zf is positively invariant for system (4.6).

This is an important observation implying that increase of horizon length enlarges the set of
feasible states, since as is well-known the crucial draw-back of some of the proposed robust model
predictive control schemes in literature is feasibility problems caused by increase of horizon length.

The control action applied to system (3.1) at time i ∈ {0, 1, . . . , N − 1} is then defined by

µi(xi) = v0
i (x) + t(ei), ei = xi − z0

i (x) (4.19)

where xi = φ(i;x, π,w), and z0
i (x) = φ̄(i, z0(x), v0(x)) and t(·) is defined in (4.10) and (4.11).

One can observe that the robust optimal control problem PN (x) is merely a quadratic (or linear,
depending on the choice of the cost) programming problem whose dimension exceeds marginally
dimension of the corresponding optimal control problem for deterministic case providing clear
computational advantage in contrast to the problem in which a matrix M is also decision variable.
Thus computational efficiency is improved drastically. In principle, this advantage is gained by
loosing some of the flexibility of the policy defined in (4.3). However, it is quite clear that the
robust optimal control problem PN (x) is a perfect candidate for efficient robust model predictive
control.

3Clearly, any other variation of the cost function that yield the standard linear or quadratic programming
problem can be also easily implemented within scope of our scheme.
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5 Efficient Robust Model Predictive Control

In this section we illustrate how the results of previous sections can be used in order to obtain com-
putationally efficient robust model predictive control of constrained linear discrete time systems
subject to additive but bounded disturbances. The scheme we propose is based on implementation
of the optimization problem PN (x) defined in (4.16) in receding horizon fashion, as is standard in
model predictive control. We show that this robust model predictive scheme, if designed appro-
priately, allows one to establish the robust exponential stability of the set F by exploiting ideas
of [MSR], while keeping in mind that Proposition 9 implies that the scheme proposed here has
an advantage over the schemes proposed in [MSR, ML01, CRZ01, KRS00, RGK97, KBM96] and
is computationally more efficient and simpler for implementation than the schemes proposed in
[LCRM04, SM98, KM03b, KM04, KA03, KA04, L0̈3b, L0̈3a, vHB03b, vHB03a, vHB02a, vHB02b].

We will consider the case when the path and the terminal costs are quadratic4. Thus Q, R and
P in (4.15) are positive definite, and that the terminal cost Vf (·) and the terminal constraint set
Zf satisfy the usual axioms ([MRRS00], page 797), namely:

A1: Zf ⊂ Z is positively invariant for x+ = AKx; KZf ⊂ V , where AK = A + BK
A2: Vf (·) is a local control Lyapunov function for the system x+ = AKx satisfying Vf (AKx) +
ℓ(x,Kx) ≤ Vf (x) for all x ∈ Zf .

where K is and stabilizing state feedback control law, but natural and beneficial choice is of course
unconstrained DLQR controller for (A,B,Q,R).

The optimal control problem solved on–line is the problem PN (x) defined in (4.16) while the
implicit model predictive control law κN (·), yielded by solution of PN (x), is defined by:

κN (x) = v0
0(x) + t(x − z0

0(x)) (5.1)

where the feedback component t(·) is defined by (4.10)–(4.11).

The main result of this section, can be obtained by a minor modification of Theorem 1 in [MSR]:

Proposition 12. The set F is robustly exponentially stable for the controlled uncertain system
x+ = Ax + BκN (x) + w, w ∈ W with region of attraction XN defined in (4.18).

Remark 19. Clearly, this scheme can also be employed to deal with exponentially decaying dis-
turbances as in [MSR].

Further flexibility and computational simplifications can be obtained by considering a set of pos-
sible implementations of the robust optimal control problem PN (x) defined in (4.16).

Remark 20 (Flexibility and efficient implementations of robust model predictive control). The opti-
mization problem PN (x) provides an extremely high degree of flexibility that can be appropriately
exploited in devising a whole set of variations of the efficient robust model predictive control
schemes. It is rather straight forward exercise to devise a set of robust model predictive control
schemes , most of which discussed and studied in more detail in [LCRM04], such as: single policy
robust model predictive controller, decreasing horizon and variable horizon controller and dual–
mode robust model predictive controller. Fuller exposition and rigorous analysis will be provided
elsewhere.

6 Numerical Examples

We illustrate the proposed robust model predictive controller by two simple 2 − D examples.

4Bear in mind that similar analysis can be repeated for different (linear, etc.) but appropriate choice of the
terminal and path cost.
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6.1 Numerical Example 1

The first numerical example is similar to that used in §3.5 except for the fact that the disturbance
and constraints are slightly modified. System is double integrator defined in (3.89):

x+ =

[

1 1
0 1

]

x +

[

1
1

]

u + w (6.1)

with additive disturbance:
W ,

{

w ∈ R
2 | |w|∞ ≤ 0.5

}

. (6.2)

and the following set of hard state and control constraints is required to be satisfied:

X = {x ∈ R
2 | x1 ≤ 1.85, x2 ≤ 2}, U = {u | |u| ≤ 2.4} (6.3)

where xi is the ith coordinate of a vector x. The cost function is defined by (4.14) and (4.15)
with Q = 100I, R = 100; the terminal cost Vf (x) is the value function (1/2)x′Pfx for the optimal
unconstrained problem for the nominal system so that

Pf =

[

194.7123 42.2082
42.2082 182.1846

]

(6.4)

The design parameters for the minimization problem P̄s (See (3.52)–(3.53)) defining the compo-
nents of feedback actions of control policy are given by:

s = 5, qα = qβ = 1, (6.5)

The optimization problem P̄s yielded the following matrix M0
s:

M0
s =













−0.3833 −1
0 0

0.15 0
0.2333 0

0 0













(6.6)

and the corresponding invariant set F = F (M0
s) shown in Figure 4 together with the terminal

set Xf = Zf ⊕ F where Zf satisfies A1 and is the maximal positively invariant set for system
z+ = (A + BK)z under the tighter constraints Z = X ⊖ F and V = U ⊖ U(F ) where K is
unconstrained DLQR controller for (A,B,Q,R). The sequence of the sets Xi, i = 0, 1, . . . , 21,
where Xi is the domain of V 0

i (·), is also shown in Figure 4.

The horizon length N = 21 is chosen to illustrate clear computational advantage of our approach
in contrast to the optimization problems considered in [KM04, KA04, L0̈3b, L0̈3a, vHB03b,
vHB03a, vHB02a, vHB02b], that would suffer from dimensionality problems of decision variable
since a matrix M defined in (4.4) is also a decision variable and it increases significantly dimension
of decision variable. To be more precise the dimension of decision variable in the optimal control
problem PN (x) is 21 + 2 = 23 while the decision variable (that is, in fact, a couple (v,M)) in the
above listed methods would have dimension 21+2·1·21 = 63, and its dimension would significantly
increase with the dimension of the state space. Also computation of feedback component is done
only once off-line and dimension in this simple example is reasonable lower, in fact s < N/4
rendering optimization problem easier to solve.

A state trajectory for initial state x0 = (0.5,−8.5)′ is shown in Figure 5 for two cases. The first case
illustrates a state trajectory corresponding to a sequence of random, but extreme, disturbances
and the second case gives a state trajectory corresponding to a sequence of random admissible
disturbances. In both illustrations the dash-dot line is the actual trajectory {x(i)} disturbances
while the dotted line is the sequence {z0

0(x(i))} of optimal initial states for corresponding reference
system.
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Figure 4: Sets Xi, i = 0, 1, . . . , 21, F = F5(M
0
5), Zf and Xf = Zf ⊕ F
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Figure 5: Trajectories for example of §6.1

6.2 Numerical Example 2

Our second numerical example is a linearized model of a flight vehicle sampled every 0.2 s:

x+ =

[

0.9814 −0.1944
0.1838 0.9386

]

x +

[

0.0272
−0.2694

]

u + w (6.7)

with additive disturbance:
W ,

{

w ∈ R
2 | |w|∞ ≤ 0.1

}

. (6.8)

and the following set of hard state and control constraints is required to be satisfied:

X = {x ∈ R
2 | x2 ≥ 0.7}, U = {u | |u| ≤ 2} (6.9)

where xi is the ith coordinate of a vector x. The cost function is defined by (4.14) and (4.15)
with Q = I, R = 1; the terminal cost Vf (x) is the value function (1/2)x′Pfx for the optimal
unconstrained problem for the nominal system so that

Pf =

[

8.0805 −1.9366
−1.9366 4.8150

]

(6.10)
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The design parameters for the minimization problem P̄s (See (3.52)–(3.53)) defining the compo-
nents of feedback actions of control policy are given by:

s = 5, qα = qβ = 1, (6.11)

The optimization problem P̄s yielded the following matrix M0
s:

M0
s =













−3.6211 3.9128
0 0
0 0
0 0

4.5578 −0.4541













(6.12)

and the corresponding invariant set F = F (M0
s) shown in Figure 6 together with the terminal

set Xf = Zf ⊕ F where Zf satisfies A1 and is the maximal positively invariant set for system
z+ = (A + BK)z under the tighter constraints Z = X ⊖ F and V = U ⊖ U(F ) where K is
unconstrained DLQR controller for (A,B,Q,R). The horizon length is N = 13. The set of
feasible states X13 (the domain of V 0

N (·)) is also shown in Figure 6.
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(a) Set of feasible states for example of §6.2
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(b) Sets F = F5(M0
5), Zf and Xf = Zf ⊕ F

Figure 6: Sets X13, F = F5(M
0
5), Zf and Xf = Zf ⊕ F

A state trajectory for initial state x0 = (2.75, 1.5)′ is shown in Figure 7 for two cases. The first case
illustrates a state trajectory corresponding to a sequence of random, but extreme, disturbances
and the second case gives a state trajectory corresponding to a sequence of random admissible
disturbances. In both illustrations the dash-dot line is the actual trajectory {x(i)} disturbances
while the dotted line is the sequence {z0

0(x(i))} of optimal initial states for corresponding reference
system.

7 Conclusions and Future Research

In this note we introduced the concept of optimized robust controlled invariance. It was shown that
an appropriate optimization problem can be posed and that its solution allows for construction of a
robustly controlled invariant set contained in the minimal norm ball. The method has an important
feature that is handling hard state and control constraints more efficiently than standard recursive
set computations of viability theory. These results improve upon existing results for computation
of the invariant approximations of minimal robustly positively invariant set for linear discrete time
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Figure 7: Trajectories for example of §6.2

systems. The proposed optimized robust controlled invariance algorithms were illustrated by an
appropriate example, in which we shown their clear superiority to existing methods.

It is further demonstrated how these results can be used in robust optimal control problem. An
interesting feature of the proposed robust optimal control problem is its computational simplicity,
in fact the decision variable of the considered robust optimal control problem is of approximately
same dimension as the one in corresponding optimal control problem for deterministic case. It was
also illustrated how these robust optimal control problem can be used in robust model predictive
control of constrained linear discrete time systems subject to bounded but additive disturbances.
The proposed scheme is computationally very simple and efficient and allows for a very strong result
of robust exponential stability of an optimized robustly controlled invariant set to be established.
A set of examples is provided to illustrate this efficient robust model predictive control algorithm.

Future research can extend presented results to the case when disturbance belongs to an arbi-
trary polytope. It is also clear that our results can address some of the issues in the polytopic
game problem. Our results would complement result reported in [CD00, Car00] in a sense that
appropriate target or home sets can be computed by our procedure.

Moreover, it is also possible to extend the results to the case when consider system is parametrically
uncertain. Finally, more detailed analysis of the presented robust model predictive scheme will
also be presented.
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[L0̈3b] J. Löfberg. Minimax approaches to robust model predictive control. PhD thesis,
Department of Electrical Engineering, Linköping University, Linköping , Sweden,
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