
LISP PROGRAMMING OF THE \SHARP 1971"

MOTORCYCLE MODEL

Simos Evangelou and David J.N. Limebeer

Department of Electrical and Electronic Engineering, Imperial College of Science,
Technology and Medicine, Exhibition Road, London SW7 2BT, UK.

e-mail:d.limebeer@ic.ac.uk web page: http://www.ee.ic.ac.uk/control/motorcycles

Summary

Linear and nonlinear models are developed for the \Sharp 1971" motorcycle model [1]
using the multi-body modelling package, Autosim [2]. The nonlinear part of the code uses
Autosim to produce a FORTRAN program which solves the nonlinear equations of motion
thereby producing time histories of the motorcycle behaviour as it evolves from an arbitrary,
but given initial condition. We have studied the behaviour associated with small initial roll
angles. The linear part of the code generates linearised equations of motion and produces a
MATLABTM �le that contains a state-space model in symbolic form. The MATLABTM code
is used to generate a plot of the real parts of the eigenvalues of the motorcycle system for a
sequence of forward speeds. By making minor changes to the MATLABTM code and using a
hand-written plotting code, it is possible to present these same stability results in root-locus
form with speed the varied parameter.

1 Introduction

Motorcycles are multi-body systems that are described by six di�erential equations. The deriva-
tion of these equations is straightforward in principle, but labour intensive in practice and prone to
error. Much of the work in generating these equations involves partial di�erentiation, dot and cross
product calculations of complicated position, velocity and acceleration vectors and the manipu-
lation of small (3x3) matrices. Once these models increase in complexity, the manual derivation
of the equations of motion becomes prohibitively time consuming and error prone. This is where
Autosim shows its real strength, as it can be programmed to carry out algebraic manipulations
e�ortlessly at high speed and with minimal risk of error. In this way, the work of the dynamicist
is reduced to providing the multi-body code with a correct description of the mechanism to be an-
alyzed. The software handles all the routine computations and generates the equations of motion
(nonlinear and linearised) in symbolic form.

2 Physical description of the model

The following assumptions are made regarding the representation of the vehicle [1]:

1. The vehicle consists of two rigid frames that are joined together via a conventional steering
mechanism. This steering freedom is constrained by a linear steering damper.

2. The front frame consists of the front wheel, forks, handlebars and �ttings.

3. The rear frame consists of the main structure, the engine-gearbox assembly, the petrol tank,
seat, rear swinging arm, the rear wheel and a rigidly attached rider.

4. Each frame has a longitudinal plane of symmetry and the axis through the front frame mass
centre parallel to the steering axis is a principal axis.

5. The road wheels are rigid discs each of which makes point contact with the road. They roll
without longitudinal slip on a at level road surface.

1

3 PROGRAMMING OF THE MODEL

6. The axis of rotation of the engine ywheel is transverse.

7. The machine moves at constant forward speed with freedom to side slip, yaw, and roll; only
small perturbations from straight running are considered.

8. The air through which the machine moves is stationary and the e�ects of aerodynamic side
forces, yawing moments and rolling moments will be small compared with the tyre e�ects
and are therefore neglected. The e�ects of drag, lift and pitching moment are to modify the
vertical loading of the tyres and to make necessary a longitudinal force at the driving wheel
suÆcient to maintain the assumed constant forward speed. These e�ects are accounted for
by variations in the coeÆcients relating tyre side forces to side-slip and camber angles.

9. Pneumatic trail of the tyres is not considered since, for the rear tyre, its e�ect will be very
small, and for the front tyre it is small compared with the mechanical trail.

10. The drag force at the front tyre is small compared with the tyre side forces.

The motorcycle is represented diagrammatically in Figure 1 [1]:

Steer axis

f k

a

� �

Gr

Gf

j

bl

C

B

E

H

c

Rf

t

l1

h

Rr

e

Figure 1: Diagrammatic representation of the motorcycle

3 Programming of the model

3.1 Body structure diagram

The multi-body system in Figure 1 is subdivided into its constituent bodies for the purpose of
writing the Autosim code. The bodies are arranged in a parent-child relationship as shown in
Figure 2. The �rst body is the Inertial Frame and it has the Yaw Frame as its only child. The
Yaw Frame has the Inertial frame as its parent and the Rear Frame as its only child. The Rear
Frame has the Yaw Frame as its parent and the Rear Wheel and Front Frame as its children. The
Front Frame has the Front Wheel as its only child. The road wheels have no children.

3.2 Program code

The same Autosim code is used to generate the nonlinear and linearised models. The linear and
nonlinear parts of the code are separated using a \linear" ag and the Lisp macros unless and
when. The ag called *linear* is set to be true (t) or false (nil) at the beginning of the code
thereby separating the linear and nonlinear parts of the code. The nonlinear part of the Autosim

2

3 PROGRAMMING OF THE MODEL 3.2 Program code

 Yaw Frame

 (rf)

Rear Frame

 Rear Wheel

 (rw)

 Front Frame

 (ff)

Front Wheel

(fw)

(ya_fr)

Inertial Frame

(n)

Figure 2: Body Structure Diagram of the motorcycle

code is then used to generate the FORTRAN �le that is used to solve the nonlinear equations
of motion, and the linear part is used to generate the symbolic representation of the linearised
system matrices which are used to obtain root-locus plots.

Autosim commands are used to describe the components of the motorcycle multi-body system
in their parent-child relationship. The programming details are described next:

� Set the ag for linear or nonlinear:

(defvar *linear*)

(setf *linear* t)

� A few preliminaries:

(reset)

(si)

(add-gravity)

(unless *linear* (setsym *multibody-system-name* "bk_71_ns"))

(when *linear* (setsym *multibody-system-name* "bk_71_ls"))

(setsym *double-precision* t)

The reset line sets various global variables used by Autosim to store equations to their
default values, si sets the units system to SI and add-gravity sets up a uniform gravitational
�eld in the z-direction of the inertial frame. The next two lines name the system as bk 71 ns

if the *linear* ag is set to nil and as bk 71 ls if the *linear* ag is set to t. The last
line sets the *double-precision* variable to true so that all the FORTRAN oating-point
declarations are made in double-precision.

3

3 PROGRAMMING OF THE MODEL 3.2 Program code

� Various points in the motorcycle nominal con�guration within the coordinate system of body
n are de�ned:

(add-point Gr :name "Rear frame centre of mass"

:body n :coordinates (0 0 -h))

(add-point rw_centre :name "Rear wheel centre point"

:body n :coordinates (-bb 0 -Rr))

(add-point ff_joint :name "Front frame joint point with rear frame"

:body n :coordinates ("aa*cos(epsilon)"

0 "-aa*sin(epsilon)"))

(add-point Gf :name "Front frame centre of mass"

:body n :coordinates (kk 0 -jj))

(add-point fw_centre :name "Front wheel centre point"

:body n :coordinates (ll 0 -Rf))

(add-point rwcpn :name "Rear wheel ground contact point in n"

:body n :coordinates (-bb 0 0))

(add-point fwcpn :name "Front wheel ground contact point in n"

:body n :coordinates (ll 0 0))

Body n is the Inertial Frame in which all of the above points are de�ned. The coordinate
system used to de�ne the points is that associated with body n. The nominal con�guration
of the motorcycle is the upright position with zero roll, yaw and steer angles and with zero
forward speed. In the above, it is usual for us to use \bb" to represent the distance \b" in
Figure 1 and so on. The reason for this is that t, g etc. are reserved variables required by
Autosim; t is time and g is gravitational acceleration constant.

� The rear frame is built into the model next:

(add-body ya_fr :name "Yaw Frame" :parent n

:translate (x y) :joint-coordinates (0 0 0)

:body-rotation-axes z :parent-rotation-axis z

:reference-axis x :mass 0

:inertia-matrix 0)

(add-speed-constraint "tu(ya_fr,1) - vu" :u "tu(ya_fr,1)")

(add-body rf :name "Rear Frame"

:parent ya_fr

:body-rotation-axes x :parent-rotation-axis x

:reference-axis y :cm-coordinates Gr

:mass Mr

:inertia-matrix ((Irx 0 Crxz)

(0 Iry 0)

(Crxz 0 Irz)))

This is done in two steps. Firstly, the Yaw Frame is introduced as a massless body with
translational degrees of freedom along the x and y directions of body n (it is a child of
n). The Yaw Frame has a further rotational degree of freedom in the z direction that
describes the yawing motion of the motorcycle. The second body is the child of the Yaw
Frame and is called the Rear Frame. This body possesses the mass and moments of inertia
of the whole rear frame assembly and also a rotational degree of freedom in the x -direction
of the Yaw Frame which is used to describe the rolling motion of the motorcycle. The
add-speed-constraint command constrains the forward velocity of the Yaw Frame, and
therefore of the motorcycle, to be equal to vu, which is the forward speed parameter de�ned
at the end of the program.

� Add in the rear wheel:

4

3 PROGRAMMING OF THE MODEL 3.2 Program code

(add-body rw :name "Rear Wheel"

:parent rf

:body-rotation-axes y

:parent-rotation-axis y

:reference-axis z

:joint-coordinates rw_centre

:mass 0

:inertia-matrix (irwx irwy irwx))

The Rear Wheel is a child of the Rear Frame. Its mass is set to zero, because it is included in
the mass of the Rear Frame, but its inertia matrix is inserted here. The :joint-coordinates
rw centre command line de�nes the coordinates of the joint of the rear wheel and the rear
frame using the coordinates of a point de�ned above in n.

� Introduce an unspun ground contact point for the Rear Wheel :

(add-point rwcp :name "Rear wheel contact point"

:body rf :coordinates rwcpn)

This point is �xed in the Rear Frame. It is introduced to assist with the calculation of the
vur variable and the rear wheel side-slip angle.

� De�ne the velocity component of rwcp along the line of intersection of the Rear Wheel plane
and the ground plane. This will be used to compute the angular velocity of the Rear Wheel :

(setsym vur "dot(vel(rwcp),[ya_frx])")

� Assume no longitudinal slip for the Rear Wheel :

(add-speed-constraint "ru(rw)*Rr + @vur" :u "ru(rw)")

The rotational speed of the Rear Wheel is constrained to be -vur/Rr which means that the
wheel is not allowed to slip longitudinally. The e�ect of this (nonholonomic) constraint is to
remove the rotational speed of the rear wheel from the equations of motion.

� De�ne the steering and reference axis for the Front Frame:

(setsym steer_axis "sin(epsilon)*[rfx] + cos(epsilon)*[rfz]")

(setsym fw_reference "cos(epsilon)*[rfx] - sin(epsilon)*[rfz]")

These two axes are de�ned to assist the addition of the front frame assembly.

� Add in the Front Frame:

(add-body ff :name "Front Frame"

:parent rf

:body-rotation-axes z

:parent-rotation-axis @steer_axis

:reference-axis @fw_reference

:joint-coordinates ff_joint

:cm-coordinates Gf

:mass Mf

:inertia-matrix (Ifx Ify Ifz))

The Front Frame is a child of the Rear Frame. It has one degree of freedom, that is a steering
freedom about the steering axis (steer axis). The reference axis (fw reference) is used
to de�ne the nominal con�guration of the Front Frame.

� Add in the Front Wheel :

5

3 PROGRAMMING OF THE MODEL 3.2 Program code

(add-body fw :name "Front Wheel"

:parent ff

:body-rotation-axes y

:parent-rotation-axis y

:reference-axis z

:joint-coordinates fw_centre

:mass 0

:inertia-matrix (ifwx ifwy ifwx))

This body has the Front Frame as parent. Its mass is zero since this has been included in
the mass of the Front Frame, but its moments of inertia are not and so they are inserted
here.

� Introduce an unspun ground contact point for the Front Wheel :

(add-point fwcp :name "Front wheel contact point"

:body ff :coordinates fwcpn)

This point is �xed in the Front Frame. It is introduced to assist with the calculation of the
vuf variable and the Front Wheel side-slip angle.

� De�ne the velocity component of fwcp along the line of intersection of the Front Wheel plane
and the ground plane:

(setsym fw_lat "dir(dplane([ffy],[nz]))")

(setsym fw_long "cross(@fw_lat,[nz])")

(setsym vuf "dot(vel(fwcp),@fw_long)")

The second line, which makes use of the �rst, de�nes the direction of the line of intersection
of the Front Wheel plane and the ground plane. The last line �nds the velocity component
of fwcp in the direction of fw long.

� No longitudinal slip on the Front Wheel :

(add-speed-constraint "ru(fw)*Rf + @vuf" :u "ru(fw)")

As with the Rear Wheel, it is assumed that the Front Wheel undergoes no longitudinal slip.
Consequently, its angular velocity is set to -vuf/Rf and the rotational speed of this wheel
is eliminated from the equations of motion by Autosim.

� De�ne the camber and side-slip angles:

(setsym phir "asin(dot([nz],[rfy]))")

(setsym phif "asin(dot([nz],[ffy]))")

(setsym alphar "asin(dot([ya_fry],dir(vel(rwcp))))")

(setsym alphaf "asin(dot(@fw_lat,dir(vel(fwcp))))")

These angles are needed in the calculation of the side forces. The �rst line de�nes the Rear
Wheel camber angle, the second line de�nes the Front Wheel camber angle and the third
line de�nes the Rear Wheel side-slip angle by making use of the point rwcp de�ned above.
The last line de�nes the Front Wheel side-slip angle via the point fwcp. Note that for the
side-slip angles, positive lateral velocities give positive slip values and negative forces. As a
consequence the signs of the side-slip angles in the side force expressions below are opposite
to those in the original paper [1].

� Introduce a steering head damping torque:

6

3 PROGRAMMING OF THE MODEL 3.2 Program code

(add-moment sd :name "Steering Damping"

:body1 ff :body2 rf

:direction [ffz]

:magnitude "-K*ru(ff)+st_tq")

This torque acts on the Front Frame with a positive magnitude and on the Rear Frame with
negative magnitude in the z -direction of the Front Frame. Its magnitude is proportional to
the rotation speed of the Front Frame relative to the Rear Frame. There is also a contribution
from the rider (st tq) which defaults to zero.

� Work out the tyre side forces and introduce a simple tyre relaxation model:

(add-state-variable Yr Yr_dot F)

(set-aux-state-deriv Yr_dot "(@vur/sigmar)*(-Cr1*@alphar+Cr2*@phir-Yr)")

(add-state-variable Yf Yf_dot F)

(set-aux-state-deriv Yf_dot "(@vuf/sigmaf)*(-Cf1*@alphaf+Cf2*@phif-Yf)")

The add-state-variable commands introduce two state variables, one for each of the two
force expressions, that are used to describe the tyre relaxation property. The force equations
are de�ned with the set-aux-state-deriv and use the values of the side-slip and camber
angles de�ned above; the set-aux-state-deriv complements the add-equation command
in earlier versions of Autosim, overcoming a diÆculty arising previously with added variables
in forming the linear model. Notice the minus sign on the Cr1*@alphar and Cf1*@alphaf

terms.

� Introduce the tyre side forces:

(add-line-force Yr2 :name "Rear Wheel Lateral Tyre Force"

:direction [ya_fry]

:point1 rwcp

:magnitude Yr)

(add-line-force Yf2 :name "Front Wheel Lateral Tyre Force"

:direction @fw_lat

:point1 fwcp

:magnitude Yf)

The direction of the two tyre side forces is in the ground plane and normal to the line of
intersection of the ground plane and the wheel plane.

� Incorporate the normal tyre loads:

(setsym ground_vector "pos(fwcpn,rwcpn)")

(setsym Gr_vector "pos(Gr,rwcpn)")

(setsym Gf_vector "pos(Gf,rwcpn)")

(setsym Zf "-G*(Mf*dot(@Gf_vector,[nx])+Mr*dot(@Gr_vector,[nx]))

/dot(@ground_vector,[nx])")

(add-line-force Zff :name "Vertical load on front wheel"

:direction [nz]

:point1 fwcp

:magnitude @Zf)

The �rst three lines de�ne three vectors from the rear wheel ground contact point to three
points in the nominal con�guration. These points are the front wheel ground contact point,

7

3 PROGRAMMING OF THE MODEL 3.2 Program code

the rear frame centre of gravity and the front frame centre of gravity respectively. The next
line calculates the magnitude of the normal force on the front wheel by projecting the three
vectors onto the ground plane in the nominal con�guration and taking moments about the
rear wheel contact point. The add-line-force command introduces the normal force into
the vehicle equations of motion. Note that only the front force is inuential since the system
has no heave freedom in body n and therefore the rear force is omitted.

� Derive the equations of motion of the system or the linearised equations:

(unless *linear* (dynamics))

(when *linear*

(add-variables dyvars real st_tq)

(linear)

)

If the *linear* ag is set to nil the full equations of motion are derived. Alternatively if
the ag is set to t the linearised equations are derived with st tq as the input. st tq is
de�ned as a real variable that is used as a steering torque input from the rider, and therefore
the corresponding B-Matrix is also computed in the linearised equations.

� All the motorcycle parameters are introduced with their names and default values1:

;;Default values for masses

(set-names Mf "Mass of front frame"

Mr "Mass of rear frame")

(set-defaults Mf 30.6472 Mr 217.4492)

;;Default values for moments of inertia

(set-names Ifx "front frame inertia w.r.t. OX4 about mass centre"

Ify "front frame inertia w.r.t. OY4 about mass centre"

Ifz "front frame inertia w.r.t. OZ4 about mass centre"

Irx "rear frame inertia w.r.t. OX2 about mass centre"

Iry "rear frame inertia w.r.t. OY2 about mass centre"

Irz "rear frame inertia w.r.t. OZ2 about mass centre"

Crxz "rear frame inertia product w.r.t. mass centre"

ifwx "front wheel camber inertia"

ifwy "front wheel polar moment of inertia"

irwx "rear wheel camber inertia"

irwy "rear wheel polar inertia")

(set-defaults Ifx 1.2338 Ify 0 Ifz 0.4420 Irx 31.1838 Iry 0 Irz

21.0694 Crxz -1.7354 ifwx 0 ifwy 0.7186 irwx 0 irwy 1.0508)

;;Geometric parameters

(set-names Rr "Rear wheel radius"

Rf "Front wheel radius")

(set-defaults aa .9485 bb .4798 h 0.615696 Rf 0.30480 Rr 0.30480

epsilon 471.5e-3 jj 0.46716 kk 0.853855 ll 0.934658)

;;Tyre parameters

(set-names sigmar "rear tyre relaxation length"

sigmaf "front tyre relaxation length"

Cf1 "front tyre cornering stiffness"

Cf2 "front tyre camber stiffness"

Cr1 "rear tyre cornering stiffness"

Cr2 "rear tyre camber stiffness")

(set-defaults sigmar 0.24384 sigmaf 0.24 Cf1 11174.38 Cf2 938.6124 Cr1

1As can be seen from the sign of Crxz, Autosim uses the opposite sign convention for products of inertia as
compared with [1].

8

5 CONCLUSIONS

15831.8556 Cr2 1326.6232)

;;Other parameters

(set-names K "steering damping coefficient")

(set-defaults K 6.78 vu 6.1538)

(unless *linear* (set-defaults iprint 1 stopt 50 step 0.01 "rq(rf)"

0.005 epsdi 1e-7 st_tq 0))

The last line sets some default values relevant only to the nonlinear model.

� Write up �les:

(unless *linear*

(write-to-file write-sim "bk_71_ns.f")

(write-to-file print-default-positions "positions.txt")

(write-to-file print-default-directions "directions.txt")

(write-to-file print-parameters "parameters.txt")

)

(when *linear*

(write-to-file write-matlab "bk_71_ls.m")

)

The FORTRAN �le is written to bk 71 ns.f and the �les positions.txt, directions.txt
and parameters.txt are used to store the default positions, directions and parameters if
the *linear* ag is set to nil. This information is a useful debugging aid. If the linearised
model is asked for, then the MATLABTM �le bk 71 ls.m is written to disc.

4 Simulations and Results

The nonlinear code is used to generate the nonlinear equations of motion in the form of a FOR-
TRAN code. The Fortran �le is compiled and executed to generate time histories of the various
dynamic variables (positions, velocities, accelerations, forces and so on). A typical plot of a time
history is shown in Figure 3. In this case the forward speed is held constant at 20 ft/s (6.1538
m/s) and there is an initial non-zero roll angle of 0.005 rad. The z rotational speed of ff relative
to rf undergoes an initial transient and then settles to zero, because the system is stable in its
straight running con�guration. It is easy to see that this transient has two di�erent frequency
components, one being fast and the other slow. The slow mode corresponds to the weave mode of
the motorcycle and has a frequency of about 2.24 rad

s
. The high frequency mode is the so called

wobble mode which has a frequency of 58.18 rad
s
.

The Autosim code is used to generate the linearised equations of motion about straight running
equilibrium conditions. In this equilibrium state the motorcycle is moving with constant forward
speed and with zero roll, yaw and steer angles. The forward speed is varied in steps and the
eigenvalues of the system for each equilibrium speed are calculated and plotted in Figure 4. The
�rst part of Figure 4 is a plot of the real parts of the eigenvalues against forward speed - this
agrees with Figure 5 in [1]. The second part of Figure 4 is the root-locus plot with forward speed
the varied parameter. A detailed analysis of the weave, wobble and capsize modes is given in
Appendix A.

5 Conclusions

The aim of this work is to demonstrate that the results presented in [1] can be reproduced by the
multi-body modelling code Autosim. As is the case with many nonlinear systems, local stability
is investigated via the eigenvalues of linearised models that are associated with equilibrium points
of the nonlinear system. In our case the linearisations were taken about constant-speed straight
running conditions. Autosim can be used to generate time histories from the nonlinear equations
of motion, and most usefully, it can also be used to generate linearised state-space models in
symbolic form. The linearised models can be imported into MATLABTM for evaluation. A

9

5 CONCLUSIONS

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

z rot. speed of ff rel. to rf

z

ro
t.
sp
ee
d
o
f
f
f

re
l.
to
r
f

-
r
a
d

s

Time - sec

Figure 3: z rot. speed of ff rel. to rf

0 20 40 60 80 100 120 140 160

−15

−10

−5

0

−50 −40 −30 −20 −10 0 10

−60

−40

−20

0

20

40

60

Stability of standard machine as a function of forward speed

R
ea
l
p
a
rt
o
f
ei
g
en
va
lu
e

Speed - ft
s

Root Locus of standard machine for varying forward speed

Im
a
g
in
a
ry

Real

Figure 4: Stability and Root Locus plots

10

A THE WEAVE, WOBBLE AND CAPSIZE MODES

typical local stability study will require time histories from the nonlinear model and the symbolic
linearised equations of motion generated by the linear Autosim code. The nonlinear equations are
stored in the FORTRAN �le bk 71 ns.f and the linearised equations of motion are stored in the
MATLABTM �le bk 71 ls.m. In order to construct the root-loci in Figure 4, two lines have to
be removed from this code: the �rst line, which is a clear statement, and the line containing the
VU=80/13 statement. The modi�ed version of the MATLABTM �le is stored in bk 71 ls.m and
the diagrams in Figure 4 may be generated using this �le and the hand-written plotting codes
bk 71 results.m and bk 71 rootlocus.m.

A The weave, wobble and capsize modes

A.1 Body capsize

When the motorcycle has zero forward velocity and the steering freedom is removed, it behaves
like an inverted pendulum that is about to fall over. For small camber angles, one can balance
inertial and gravitational moments to obtain:

(
X

Ii)�� = g�(
X

mili) (1)

in which � is the camber angle and
P

Ii is the total moment of inertia of the vehicle about the line
joining the two wheel ground contact points in the nominal con�guration as shown in Figure 5.
The sum g�

P
mili is the total torque generated by the gravitational forces. It is easy to see that

the second order di�erential equation (1) has two real poles associated with it:

� = �

s
g(
P

mili)P
Ii

: (2)

Figure 6 shows the right-half plane part of the root-locus corresponding to the \Sharp 1971"

Figure 5: Motorcycle as an inverted pendulum.

model for low values of forward speed. As the machine speed increases, these poles meet, coalesce
and become the complex pole pair associated with the weave motion of the machine. The pole with
the largest initial value of about 4.27 corresponds to the positive solution of equation (2) which
can be solved to yield 3.46 for the \Sharp 1971" model parameters. The reason for the discrepancy
between these two values (4.27 and 3.46) can be traced to the vehicle's steering action. Indeed,
when steering is inhibited, the \Sharp 1971" model has a positive real pole located at 3.494 rather
than at 4.27 as shown in Figure (6). The reason for this increased capsize growth rate under
steering is interesting. Suppose the machine begins to fall to the rider's right. In this case the
motorcycle's steering geometry causes the machine to steer right thereby moving the front wheel
ground contact point towards the rider's left. Consequently, the ground contact line that joins

11

A THE WEAVE, WOBBLE AND CAPSIZE MODES A.2 Steering capsize

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Im
a
g
in
a
ry

Real

Figure 6: Capsize portion of the root-locus plot.

the front and rear wheel ground contact points rotates to the rider's left. This means that the
gravitational torque produced by the g�

P
mili terms increase and so the machine capsizes more

quickly.

A.2 Steering capsize

Consider the simpli�ed situation in which the rear frame is �xed (in body n) and the Front Frame
is free to steer (ground contact e�ects being ignored). This situation is shown in Figure 7. As
before, balancing the gravitational and inertial torques gives:

Ifz�Æ = (Mfgesin�)Æ (3)

in which all the symbols have their usual meaning. This second order system has the real poles:

� = �

s
Mfgesin�

Ifz
(4)

associated with it. Substituting the \Sharp 1971" model parameters into (4) gives the positive
real pole a value of 2.742. As we will explain, this root is related to the smaller of the real roots
in Figure 6. The initial agreement is not very good, because equation (4) predicts a growth rate
of � e2:742t, while the \Sharp 1971" model predicts a rate of about � e3:33t. It turns out that this
discrepancy is due to a combination of the steering damping, which is neglected in equation (4),
and the front wheel tyre forces. In order to show this, one can multiply the steering damping factor
and the front wheel tyre forces terms in the \Sharp 1971" Autosim code by a parameter �, and
then consider reducing the value of � from 1! 0. It turns out that the real pole corresponding to
the steering capsize mode varies from 3:33 ! 2:69. This latter value is much closer to the �gure
of 2.74 predicted by equation (4). If in addition the rolling motion of the rear frame is inhibited
by setting Irx to some large value, the pole predicted by the Autosim code becomes even closer
to that predicted by equation (4); we obtained agreement to three signi�cant �gures.

A.3 Wobble frequency

As we will show, the wobble frequency for small forward speeds can be calculated by considering
the front frame and the front wheel tyre side force. The situation of interest is shown in Figure 8.
Balancing the inertial torque with that generated by the side-slip tyre force gives:

12

A THE WEAVE, WOBBLE AND CAPSIZE MODES A.3 Wobble frequency

Mf e

Æ

Mfg

Mfgsin�

Figure 7: Steering mechanism as it relates to the steering capsize mode.

Æ � �

�

t

Cf1�

�

Figure 8: The steering system and the tyre forces associated with the wobble mode.

13

REFERENCES REFERENCES

Ifz�Æ = �tCf1� (5)

and since � = Æcos�

Ifz�Æ = �tCf1Æcos�: (6)

This gives a predicted wobble frequency of:

!wobble =

s
tCf1cos�

Ifz
: (7)

The \Sharp 1971" model predicts a low-speed wobble frequency of 57.7, which is good agreement
with the value of 51.1 computed from equation (7).

References

[1] R. S. Sharp, \The stability and control of motorcycles", Jour. Mech. Eng. Sci., Vol. 13, No.
5, 1971, pp. 316-329.

[2] Mechanical Simulation Corporation, \Autosim 2.5+ Reference Manual", 1998,
http://www.trucksim.com.

14

