
LISP PROGRAMMING OF THE \SHARP 1994"

MOTORCYCLE MODEL

Simos Evangelou and David J.N. Limebeer

Department of Electrical and Electronic Engineering, Imperial College of Science,
Technology and Medicine, Exhibition Road, London SW7 2BT, UK.

e-mail:d.limebeer@ic.ac.uk web page: http://www.ee.ic.ac.uk/control/motorcycles

Summary

Linear and nonlinear models are developed for the \Sharp 1994" motorcycle model [2]
using the multi-body modelling package, Autosim [3]. The nonlinear part of the code uses
Autosim to produce a FORTRAN program which solves the nonlinear equations of motion
thereby producing time histories of the motorcycle behaviour as it evolves from an arbitrary,
but given initial condition. We have studied the behaviour associated with small initial roll
angles. The linear part of the code generates linearised equations of motion and produces a
MATLABTM �le that contains a state-space model in symbolic form. The MATLABTM code
is used to generate root-locus stability plots with speed the varied parameter. The hands-on
and hands-o� cases are studied via the adjustment of a few parameter values.

1 Introduction

Motorcycles are multi-body systems that can be described by a large number of di�erential e-
quations. The derivation of these equations is straightforward in principle, but labour intensive
in practice and prone to error. Much of the work in generating these equations involves partial
di�erentiation, dot and cross product calculations of complicated position, velocity and accelera-
tion vectors and the manipulation of small matrices. Once these models increase in complexity,
the manual derivation of the equations of motion becomes prohibitively time consuming and error
prone. This is where Autosim shows its real strength, as it can be programmed to carry out
algebraic manipulations e�ortlessly, at high speed and with minimal risk of error. In this way, the
work of the dynamicist is reduced to providing the Autosim code with a correct description of the
mechanism to be analyzed. The software handles all the routine computations and generates the
equations of motion (nonlinear and linearised) in symbolic form.

2 Physical description of the model

The following assumptions are made regarding the vehicle under study [2]:

1. The motorcycle is represented as an assembly of rigid bodies as follows:

� (a) Handlebars, front forks and front wheel.

� (b) Rear frame containing the engine with components rotating about transverse axes
(giving rise to gyroscopic moments), the rider's legs and lower body.

� (c) The rear wheel assembly.

� (d) The rider's upper body.

2. The bodies are joined together as follows: Each of bodies (a), (c) and (d) are joined to the
rear frame (b) as shown in Figure 1 [2]. The joint between the front frame (a) and the rear
frame (b) is the steer axis revolute joint. The damping and sti�ness coeÆcients associated
with this joint are used to represent the torques generated by the rider's arms. The housing

1

3 PROGRAMMING OF THE MODEL

of the steering head bearings is connected to the rear frame by two exible mechanisms.
One allows relative lateral translation, while the other allows relative rotation about an
axis perpendicular to the steering axis. Appropriate sti�nesses and damping coeÆcients are
associated with these mechanisms.

3. The joint between the rear frame (b) and the rear wheel assembly (c) is an inclined hinge.
There are sti�ness and damping coeÆcients associated with this hinge. The upper body of
the rider (d) is connected to the rear frame (b) by a longitudinal hinge at saddle height. The
rider's muscular activity in remaining upright is represented by a spring-damper system.

4. The following degrees of freedom are allowed:

� Forward and lateral motion of the reference point O, Figure 1.

� Yaw of the rear frame.

� Roll of the rear frame.

� Lateral displacement of the steer axis relative to the rear frame.

� Twist displacement of the steer axis relative to the rear frame.

� Steering displacement of the front frame relative to the rear frame.

� Twist displacement of the rear wheel assembly relative to the rear frame.

� Roll displacement of the rider's upper body relative to the rear frame.

5. The tyre force and moment system is described as follows: side force and self aligning
moments proportional to side-slip angle are generated. The constants of proportionality
are functions of tyre load and these vary with speed since aerodynamic drag and lift forces
and aerodynamic pitching moment inuences are included in the model. The side force and
aligning moment responses to side-slip are lagged, via a single time constant �

u
, in which �

is the tyre relaxation length. The relaxation length � varies with tyre load, in accordance
with measured data.

6. Side forces, aligning moments and overturning moment responses proportional to camber
angle are introduced. Again, the constants of proportionality depend on tyre load, but
in this case the camber force system responds instantly to changes in camber angle. The
overturning moment response, also instantaneous, is calculated from the radius of curvature
of the tyre cross-section. The normal reaction between the tyre and the ground moves
around the cross-section as the camber angle changes. This e�ect is represented by a force
and overturning moment at the theoretical centre of tyre/ground contact (as for an in�nitely
thin tyre). On this basis, the constant of proportionality between the overturning moment
and the camber angle is proportional to load. These responses are not lagged, because they
are geometrical in origin, rather than dependent on tyre distortions, that take time to build
up.

The motorcycle is represented diagrammatically in Figure 1 [2].

3 Programming of the model

3.1 Body structure diagram

The multi-body system in Figure 1 is subdivided into its constituent bodies for the purpose of
writing the Autosim code { the bodies are arranged in the parent-child relationship shown in
Figure 2. The �rst body is the Inertial Frame which has the Yaw Frame as its only child. The
Yaw Frame has the Inertial frame as its parent and the Rear Frame as its only child. The Rear
Frame has the Yaw Frame as its parent and the Rider Upper Body, Engine Flywheel, the Rear
Wheel and Steering Head assemblies as its children. The Rear Wheel Assembly has the Rear Wheel
as its only child. The Steering Head Frame has the Front Frame as its only child and the Front
Frame has the Front Wheel as its only child. The road wheels, Rider Upper Body and Engine
Flywheel have no children.

2

3 PROGRAMMING OF THE MODEL 3.1 Body structure diagram

bb

a

Mr

Mb

Mp

Mf

j

b l

hs

hb

bp

hp

s

Rf

t

h

Rr

e

�
�1

twist axis

steer axis

upper body

roll axis

twist

axis

O

k

Figure 1: Diagrammatic representation of the motorcycle showing dimensions.

(efw)

Inertial Frame
(n)

Yaw Frame
(yaw_fr)

Rear Frame
(rf)

Front Wheel

(fw)

(ff)

Steering Head Frame

Front Frame

(st_hd)

Rider Upper Body

(ubr)

Rear Wheel Assembly

(rwa)

Rear Wheel

(rw)

Engine Flywheel

Figure 2: Body Structure Diagram of the motorcycle.

3

3 PROGRAMMING OF THE MODEL 3.2 Program codes

3.2 Program codes

The same Autosim code is used to generate the nonlinear and linearised models. A ag called
linear is set at the beginning of the code to either true (t) or false (nil) and the appropriate
parts of the code are selected or deselected so as to provide the nonlinear and linearised models.
These parts of the code that are relevant to the nonlinear and linearised model building are
separated via the use of the Lisp macros unless and when.

Autosim commands are used to describe the components of the motorcycle multi-body system
via their parent-child relationships. The nonlinear version of the Autosim code is then used to
generate the FORTRAN �le that solves the nonlinear equations of motion, and the linear part is
used to generate the symbolic representation of the linearised system matrices that are used to
obtain root-locus plots. The programming details are described next:

� Set the ags:

(defvar *linear*)

(defvar *hands-on*)

(setf *linear* nil)

(setf *hands-on* nil)

The *linear* ag is used to select nonlinear or linearised model building. The *hands-on*
ag chooses between the hands-o� and hands-on cases.

� A few preliminaries:

(reset)

(si)

(add-gravity)

(unless *linear* (setsym *multibody-system-name* "bk_94_ns"))

(when *linear* (setsym *multibody-system-name* "bk_94_ls"))

(setsym *double-precision* t)

The reset line sets various global variables used by Autosim to store equations to their
default values, si sets the units system to SI and add-gravity sets up a uniform gravitational
�eld in the z-direction of the inertial frame. The next two lines name the system as bk 94 ns

if the *linear* ag is set to nil and as bk 94 ls if the *linear* ag is set to t. The last
line sets the *double-precision* variable to true so that all the FORTRAN oating-point
declarations are made in double-precision.

� Some dimensions are computed here:

(setsym kk "ll+(ee+trail-jj*sin(epsilon))/cos(epsilon)")

(setsym whl_bs "bb+ll")

� Various points in the motorcycle nominal con�guration within the coordinate system of body
n are de�ned (shown diagrammatically in Figure 3):

(add-point p1 :name "Rear Frame centre of mass"

:body n :coordinates (0 0 -hh))

(add-point p2 :name "Rear Wheel Assembly centre of mass"

:body n :coordinates (-bb_b 0 -hh_b))

(add-point p3 :name "Front Frame centre of mass"

:body n :coordinates (@kk 0 -jj))

(add-point p4 :name "Rider centre of mass"

:body n :coordinates (-bb_p 0 "-hh_s-hh_p"))

(add-point p5 :name "Rear Wheel centre point"

:body n :coordinates (-bb 0 -Rr))

(add-point p6 :name "Front Wheel centre point"

4

3 PROGRAMMING OF THE MODEL 3.2 Program codes

:body n :coordinates (ll 0 -Rf))

(add-point p7 :name "Rear Wheel Assembly joint with Rear Frame"

:body n :coordinates ("-bb+aa*cos(epsilon1)" 0

"-aa*sin(epsilon1)"))

(add-point p8 :name "Front Twist Frame joint with Rear Frame"

:body n :coordinates

("ll+trail/cos(epsilon)-ss*tan(epsilon)" 0 -ss))

(add-point p9 :name "Rider joint with Rear Frame"

:body n :coordinates (-bb_p 0 -hh_s))

(add-point p10 :name "Rear Wheel ground contact point in n"

:body n :coordinates (-bb 0 0))

(add-point p11 :name "Front Wheel ground contact point in n"

:body n :coordinates (ll 0 0))

(add-point p12 :name "Centre of pressure"

:body n :coordinates ("@whl_bs/2-bb" 0 -hh_cp))

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10 p11

p12

twist axis

steer axis

upper body

roll axis

twist

axis

O

Figure 3: Diagrammatic representation of the motorcycle showing points.

Body n is the Inertial Frame in which all of the above points are de�ned. The coordinate
system used to de�ne the points is that associated with body n. The nominal con�guration
of the motorcycle is the upright position with zero roll, yaw, steer and twist angles and with
zero forward speed. In the above, it is usual for us to use \bb" to represent the distance \b"
in Figure 1, or \bb b" to represent \bb" and so on. The reason for this is that t, g etc. are
reserved variables required by Autosim; t is time and g is acceleration due to gravity.

� The rear frame is introduced into the model next. This is done in two steps:

(add-body yaw_fr :name "Yaw Frame"

:translate (x y)

:body-rotation-axes z

:parent-rotation-axis z

:reference-axis x

:mass 0

:inertia-matrix 0)

(when *linear*

(add-speed-constraint "tu(yaw_fr,1) - vu" :u "tu(yaw_fr,1)")

)

(add-body rf :name "Rear Frame"

:parent yaw_fr

5

3 PROGRAMMING OF THE MODEL 3.2 Program codes

:body-rotation-axes x

:parent-rotation-axis x

:reference-axis y

:cm-coordinates p1

:mass Mr

:inertia-matrix ((Irx 0 Irxz)

(0 0 0)

(Irxz 0 Irz)))

Firstly, the Yaw Frame is introduced as a massless body with translational freedoms in the
x and y directions of body n (it is a child of n). Also, the Yaw Frame has a rotational
degree of freedom in the z -direction (of body n) that describes the yawing motion of the
motorcycle. The body named \Rear Frame" has the Yaw Frame as its parent and it has the
mass and inertia properties1 of the vehicle's entire rear frame assembly. It has one degree
of rotational freedom around the Yaw Frame's x -axis and this freedom is used to model
the rolling motion of the motorcycle. Unlike the \Sharp 1971" model [1], we do not use
an add-speed-constraint command to constrain the forward velocity of the Yaw Frame
unless the linear code has been selected. As will be explained later, the motorcycle speed is
controlled using a speed controller in the nonlinear case.

� Add in the rider upper body:

(add-body ubr :name "Rider Upper Body"

:parent rf

:body-rotation-axes x

:parent-rotation-axis x

:reference-axis y

:joint-coordinates p9

:cm-coordinates p4

:mass Mp

:inertia-matrix ((Ipx 0 Ipxz)

(0 0 0)

(Ipxz 0 Ipz)))

The Rider Upper Body is a child of the Rear Frame. It has the freedom to roll relative to
the Rear Frame and it has a mass and inertia-matrix associated with it.

� Add the rear wheel assembly:

(setsym rear_twist "sin(epsilon1)*[rfx] + cos(epsilon1)*[rfz]")

(add-body rwa :name "Rear Wheel Assembly"

:parent rf

:body-rotation-axes x

:parent-rotation-axis @rear_twist

:reference-axis y

:joint-coordinates p7

:cm-coordinates p2

:mass Mb

:inertia-matrix 0)

Before the Rear Wheel Assembly is included in the code, the direction vector about which the
Rear Wheel Assembly twists relative to the Rear Frame is de�ned via the vector (rear twist).
The Rear Wheel Assembly is also a child of the Rear Frame and it only has mass associated
with it.

1Note that the inertia matrices of the Rear Frame and Rider Upper Body have been interchanged as compared
with reference [2]. In addition, we should warn the reader that [2] and Autosim use di�erent sign conventions for
the products of inertia.

6

3 PROGRAMMING OF THE MODEL 3.2 Program codes

� Add in the rear wheel:

(add-body rw :name "Rear Wheel"

:parent rwa

:body-rotation-axes y

:parent-rotation-axis y

:reference-axis z

:joint-coordinates p5

:mass 0

:inertia-matrix ((irwx 0 0)

(0 irwy 0)

(0 0 irwx)))

The Rear Wheel is a child of the Rear Wheel Assembly. Its mass is set to zero, because it
has already been included in the mass of the Rear Wheel Assembly ; the Rear Wheel does
however have inertia properties. The :joint-coordinates p5 command line de�nes the
coordinates of the wheel spin axis. The point p5 has already been de�ned in body n.

� Introduce an unspun ground contact point for the Rear Wheel :

(add-point rwcp :name "Rear wheel contact point"

:body rwa :coordinates p10)

This point is �xed in the Rear Frame and is introduced to assist with the calculation of the
vur variable and the rear wheel side-slip angle. It is also used as the point of application of
the rear tyre forces.

camber = asin(dot([rway],[nz]))

[nx]

ground plane

rw_lat = dir(dplane([rway],[nz]))

[ny]

yaw angle

camber angle

[rway]

[nz]

starboard side rw_long = cross(@rw_lat,[nz])

Figure 4: Wheel camber and yaw angles.

� De�ne the velocity component of rwcp along the line of intersection of the Rear Wheel plane
and the ground plane. This will be used to compute the angular velocity of the Rear Wheel
as follows:

(setsym rw_lat "dir(dplane([rway],[nz]))")

(setsym rw_long "cross(@rw_lat,[nz])")

(setsym vur "dot(vel(rwcp),@rw_long)")

7

3 PROGRAMMING OF THE MODEL 3.2 Program codes

The second line, which makes use of the �rst, de�nes the direction of the line of intersection
of the Rear Wheel plane and the ground plane. The last line �nds the velocity component
of rwcp in the direction of rw long. We refer the reader to Figure 4 for a diagrammatic
representation of the various vector quantities being used.

� Assume no longitudinal slip for the Rear Wheel :

(add-speed-constraint "ru(rw)*Rr + @vur" :u "ru(rw)")

The rotational speed of the Rear Wheel is constrained to be -vur/Rr which means that the
wheel is not allowed to slip longitudinally. The e�ect of this (nonholonomic) constraint is to
remove the rotational speed of the rear wheel from the equations of motion.

� De�ne the front twist axis for the Front Frame:

(setsym front_twist "cos(epsilon)*[rfx] - sin(epsilon)*[rfz]")

This axis is used to assist with the addition of the front frame assembly, which is introduced
into the model in two steps.

� Add in the front frame assembly:

(add-body st_hd :name "Steering Head Frame"

:parent rf

:translate y

:body-rotation-axes x

:parent-rotation-axis @front_twist

:reference-axis y

:joint-coordinates p8

:mass 0

:inertia-matrix 0)

(add-body ff :name "Front Frame"

:parent st_hd

:body-rotation-axes z

:parent-rotation-axis z

:reference-axis x

:cm-coordinates p3

:mass Mf

:inertia-matrix ((Ifx 0 Ifxz)

(0 0 0)

(Ifxz 0 Ifz)))

To begin, the Steering Head Frame is used to represent lateral displacements and rotational
twist freedoms between the Front Frame and the Rear Frame. The Front Frame is then
added as a child of the Steering Head Frame. The steering freedom, the mass and the
inertia-matrix of the front frame assembly are also included at this point.

� Add in the Front Wheel :

(add-body fw :name "Front Wheel"

:parent ff

:body-rotation-axes y

:parent-rotation-axis y

:reference-axis z

:joint-coordinates p6

:mass 0

:inertia-matrix (0 ifwy 0))

8

3 PROGRAMMING OF THE MODEL 3.2 Program codes

This body has the Front Frame as its parent. Its mass and x and z inertias are zero since
these have been included in the Front Frame description. The spin inertia of the Front Wheel
is included so that angular momentum (gyroscopic) e�ects are correctly represented.

� Introduce an unspun ground contact point for the Front Wheel :

(add-point fwcp :name "Front wheel contact point"

:body ff :coordinates p11)

This point is �xed in the Front Frame. It is introduced to assist with the calculation of the
vuf variable and the Front Wheel side-slip angle. It is also used as the point of application
of the front tyre forces.

� De�ne the velocity component of fwcp along the line of intersection of the Front Wheel plane
and the ground plane:

(setsym fw_lat "dir(dplane([ffy],[nz]))")

(setsym fw_long "cross(@fw_lat,[nz])")

(setsym vuf "dot(vel(fwcp),@fw_long)")

The second line, which makes use of the �rst, de�nes the direction of the line of intersection
of the Front Wheel plane and the ground plane. The last line �nds the velocity component
of fwcp in the direction of fw long.

� No longitudinal slip on the Front Wheel :

(add-speed-constraint "ru(fw)*Rf + @vuf" :u "ru(fw)")

As with the Rear Wheel, it is assumed that the Front Wheel undergoes no longitudinal slip.
Consequently, its angular velocity is set to -vuf/Rf and the rotational speed of the wheel is
eliminated from the equations of motion by Autosim.

� Add in the engine ywheel:

(add-body efw :name "Engine flywheel"

:parent rf

:body-rotation-axes y

:parent-rotation-axis y

:reference-axis z

:mass 0

:inertia-matrix (0 iry 0))

The Engine Flywheel is a child of the Rear Frame and is located at its origin with freedom to
rotate about the y-axis of the Rear Frame. The Engine Flywheel has a spin inertia associated
with it so that the associated angular momentum e�ects associated with the spinning engine
can be reproduced in the model.

� The Engine Flywheel is assumed to rotate at the same speed as the Rear Wheel { Its inertia
is adjusted to make this accurate:

(add-speed-constraint "ru(efw)*Rr + @vur" :u "ru(efw)")

It is assumed that the Engine Flywheel rotates with an angular speed of -vur/Rr and
consequently this freedom can be eliminated from the equations of motion.

� De�ne the camber and side-slip angles:

(setsym phir "asin(dot([nz],[rwy]))")

(setsym phif "asin(dot([nz],[fwy]))")

(setsym alphar "asin(dot(@rw_lat,dir(vel(rwcp))))")

(setsym alphaf "asin(dot(@fw_lat,dir(vel(fwcp))))")

9

3 PROGRAMMING OF THE MODEL 3.2 Program codes

These angles are needed in the calculation of the tyre side forces and moments. The �rst
line de�nes the Rear Wheel camber angle, the second line de�nes the Front Wheel camber
angle and the third de�nes the Rear Wheel side-slip angle by making use of the point rwcp
de�ned above. The last line de�nes the Front Wheel side-slip angle via the point fwcp. Note
that for the side-slip angles, positive lateral velocities give positive slip values and negative
forces.

� Add the driving torque:

(unless *linear*

(add-state-variable D_tqi D_tqip "F*l")

(set-aux-state-deriv D_tqip "vu-tu(yaw_fr,1)")

(setsym D_tq "kp*(vu-tu(yaw_fr,1))+ki*D_tqi")

(add-moment Dr_mom :name "Rear wheel drive torque"

:body1 rw :body2 rf

:direction [rwy]

:magnitude -@D_tq)

)

Unlike the \Sharp 1971" model [1], this code uses a PI control loop to maintain a constant
forward velocity for the Yaw Frame for the nonlinear case. This controller is shown in
Figure 5. The �rst two lines de�ne the integral part of the control loop. All the contributions

vu

tu(yaw fr,1)

D tq
error

+

�

kp + ki
s

Figure 5: Control loop on the forward speed.

are added on the last line. The drive torque is then applied to the Rear Wheel with the
reaction coming from the Rear Frame. If the *linear* ag is set to t then no driving torque
is added and the add-speed-constraint command discussed earlier is used. This change
was introduced to obviate the problem of tracking the initial value of D tq as a function of
speed.

� Introduce various damping and sti�ness forces and moments:

(add-moment ubr_tq :name "Rider Upper Body Damping and Stiffness"

:body1 ubr :body2 rf

:direction [ubrx]

:magnitude "-k_zita*rq(ubr) - D_zita*ru(ubr)")

(add-moment rwa_tq :name "Rear Twist Damping and Stiffness"

:body1 rwa :body2 rf

:direction [rwax]

:magnitude "-k_lamda*rq(rwa) - D_lamda*ru(rwa)")

(add-line-force st_hd_f :name "Steering Head Lateral Stiffness"

10

3 PROGRAMMING OF THE MODEL 3.2 Program codes

:direction [st_hdy]

:point1 st_hd0 :point2 st_hdj

:magnitude "-k_v*tq(st_hd) - D_v*tu(st_hd)")

(add-moment st_hd_tq :name "Front Twist Torque"

:body1 st_hd :body2 rf

:direction [st_hdx]

:magnitude "-k_gamma*rq(st_hd) - D_gamma*ru(st_hd)")

(add-moment steer_torq :name "Steering Damping and Stiffness"

:body1 ff :body2 st_hd

:direction [ffz]

:magnitude "-k_steer*rq(ff)-D_steer*ru(ff)+rid_tq")

All the moments inserted here involve moments generated by torsional springs and dampers
except from the last one which includes an external torque input from the rider { this defaults
to zero. The �rst one is the moment between the Rider Upper Body and the Rear Frame.
The second, between the Rear Wheel Assembly and the Rear Frame. The third moment
is between the Steering Head Frame and the Rear Frame and the �nal one is between the
Front Frame and the Steering Head Frame. The add-line-force command introduces a
lateral force between the Steering Head Frame and the Rear Frame via a spring and damper.
Appropriate values for the spring and damper constants are given at the end of the program
listing.

� Introduce the aerodynamic drag and lift forces:

(add-point p13 :name "Centre of Pressure in rf" :body rf :coordinates p12)

(add-line-force drag :name "Aerodynamic Drag"

:direction [rfx]

:point1 p13

:magnitude "-Dc*(tu(yaw_fr,1)**2)")

(add-line-force lift :name "Aerodynamic Lift"

:direction [rfz]

:point1 p13

:magnitude "-Lc*(tu(yaw_fr,1)**2)")

The point p13 is used to de�ne the centre of pressure which is a point attached on the
Rear Frame. The aerodynamic drag and lift forces are both applied here. These forces are
proportional to the square of the forward speed (tu(yaw fr,1)**2).

� Work out the normal tyre loads:

(setsym Zf "((Mf*(bb+@kk)+Mr*bb+Mb*(bb-bb_b)+Mp*(bb-bb_p))*G

-(vu**2)*(Dc*hh_cp+Lc*@whl_bs/2))/@whl_bs")

(setsym Zr "(Mf+Mr+Mp+Mb)*G-Lc*vu**2-@Zf")

The purpose of the above is to compute the normal tyre loads under a steady-state speed
condition. This is done by taking moments about the rear wheel ground contact point.

� Calculate tyre parameters:

(setsym Cfvr "-92.9+23.129*@Zr-(4.663/1000)*@Zr**2-(6.457*10**(-7))*@Zr**3

+(1.887*10**(-10))*@Zr**4")

(setsym Cfvf "-300+28.577*@Zf-0.0143*@Zf**2+(1.431*10**(-6))*@Zf**3

+(3.347*10**(-10))*@Zf**4")

(setsym Cmvr "9+0.3573*@Zr + (3.378*10**(-5))*@Zr**2")

(setsym Cmvf "-0.281+0.2442*@Zf+(8.575*10**(-5))*@Zf**2")

11

3 PROGRAMMING OF THE MODEL 3.2 Program codes

(setsym Cr1 "27.38+0.9727*@Zr-(4*10**(-6))*@Zr**2")

(setsym Cf1 "-13.25+1.302*@Zf-(1.39*10**(-4))*@Zf**2")

(setsym Cr2 "2.056+0.01282*@Zr+(4.928*10**(-6))*@Zr**2")

(setsym Cf2 "2.788+0.0165*@Zf+(3.9*10**(-6))*@Zf**2")

(setsym Cr3 "-0.07*@Zr")

(setsym Cf3 "-0.06*@Zf")

(setsym sigmar "0.03594+(1.941*10**(-4))*@Zr-(5.667*10**(-8))*@Zr**2

+(5.728*10**(-12))*@Zr**3")

(setsym sigmaf "0.1012+(1.297*10**(-4))*@Zf-(3.267*10**(-8))*@Zf**2")

Since aerodynamics e�ects are included, the tyre loads will vary with forward speed as will
the various tyre parameters.

� Introduce a simple tyre relaxation model:

(add-state-variable Yr Yr_dot F)

(set-aux-state-deriv Yr_dot "(@vur/@sigmar)*(-@Cfvr*@alphar - Yr)")

(add-state-variable Yf Yf_dot F)

(set-aux-state-deriv Yf_dot "(@vuf/@sigmaf)*(-@Cfvf*@alphaf - Yf)")

(add-state-variable Mzr Mzr_dot "F*l")

(set-aux-state-deriv Mzr_dot "(@vur/@sigmar)*(@Cmvr*@alphar - Mzr)")

(add-state-variable Mzf Mzf_dot "F*l")

(set-aux-state-deriv Mzf_dot "(@vuf/@sigmaf)*(@Cmvf*@alphaf - Mzf)")

The add-state-variable commands introduce four state variables, one for each of the tyre
force expressions and one for each of the tyre moment expressions. These states are used to
describe the tyre relaxation properties. The force and moment equations are de�ned with
the set-aux-state-deriv expressions and use the values of the side-slip, camber angle and
tyre parameters de�ned above. The set-aux-state-deriv commands replace the earlier
add-equation commands. Notice the minus sign on the Cr1*@alphar and Cf1*@alphaf

terms.

� Introduce the tyre side forces and moments:

(add-line-force Yrt :name "Total Rear Lateral Force"

:direction @rw_lat

:point1 rwcp

:magnitude "@Cr1*@phir + Yr")

(add-line-force Yft :name "Total Front Lateral Force"

:direction @fw_lat

:point1 fwcp

:magnitude "@Cf1*@phif + Yf")

(add-moment Mzrt :name "Total Rear Aligning Moment"

:body1 rwa

:direction [nz]

:magnitude "@Cr2*@phir + Mzr")

(add-moment Mzft :name "Total Front Aligning Moment"

:body1 ff

:direction [nz]

:magnitude "@Cf2*@phif + Mzf")

(add-moment Mxr :name "Rear Righting Moment"

12

3 PROGRAMMING OF THE MODEL 3.2 Program codes

:body1 rwa

:direction @rw_long

:magnitude "@Cr3*@phir")

(add-moment Mxf :name "Front Righting Moment"

:body1 ff

:direction @fw_long

:magnitude "@Cf3*@phif")

The two forces are the tyre side forces and their directions are in the ground plane and
normal to the line of intersection of the ground plane and the wheel plane. The tyre models
include side forces due to the rolling and are introduced without relaxation, because these
forces are produced by geometric e�ects. Next, the aligning moments are introduced with
terms due to side-slip and terms due to camber. As with the side forces, relaxation e�ects are
only associated with the side-slip components. The direction of these moments is the z -axis
of the inertial frame. Finally, we introduce the front and rear tyre overturning moments.
These moments are applied in the fw long and rw long direction respectively. Since these
moments are purely geometric in character, they do not have relaxation e�ects associated
with them.

� Incorporate the longitudinal and normal tyre loads:

(setsym Xr "-(Crr1 + Crr2*@vur**2)*@Zr")

(setsym Xf "-(Crr1 + Crr2*@vuf**2)*@Zf")

(add-line-force Xrr :name "Rear Longitudinal Force"

:direction @rw_long

:point1 rwcp

:magnitude @Xr)

(add-line-force Xff :name "Front Longitudinal Force"

:direction @fw_long

:point1 fwcp

:magnitude @Xf)

(add-line-force Wr :name "Rear Vertical Force"

:direction [nz]

:point1 rwcp

:magnitude "-@Zr")

(add-line-force Wf :name "Front Vertical Force"

:direction [nz]

:point1 fwcp

:magnitude "-@Zf")

The two longitudinal forces represent the rolling resistance to the forward motion of the
motorcycle wheels and have a magnitude that depends on the forward speed of the vehicle.
These forces are proportional to the normal tyre loads as de�ned in the two setsym expres-
sions. The normal tyre forces are introduced into the vehicle equations of motion by the last
two commands.

� Derive the equations of motion of the system or the linearised equations:

(unless *linear* (dynamics))

(when *linear*

(add-variables dyvars real rid_tq)

(linear :u rid_tq)

)

13

3 PROGRAMMING OF THE MODEL 3.2 Program codes

If the *linear* ag is set to nil the full equations of motion are derived, otherwise the
linearised equations are computed with rid tq as the input. rid tq is de�ned as a real
variable that is used as a steering torque input from the rider, and therefore the corresponding
B-Matrix is also computed in the linearised equations.

� All the motorcycle parameters are introduced with their names and default values2:

;;; Default values for masses:

(set-names Mf "Mass of Front Frame"

Mr "Mass of Rear Frame"

Mb "Mass of Rear Wheel Assembly"

Mp "Mass of Upper Body of Rider")

(set-defaults Mf 40.59 Mr 170.3 Mb 25.0 Mp 50.0)

;;; Default values for moments of inertia:

(set-names Ifx "front frame inertia about x-axis"

Ifz "front frame inertia about z-axis"

Ifxz "front frame inertia product"

Ipx "rear frame inertia about x-axis"

Ipz "rear frame inertia about z-axis"

Ipxz "rear frame inertia product"

Irx "rider upper body inertia about x-axis"

Irz "rider upper body inertia about z-axis"

Irxz "rider upper body inertia product"

irwx "rear wheel inertia about x-axis"

irwy "rear wheel spin inertia"

ifwy "front wheel spin inertia"

iry "effective engine flywheel inertia")

(set-defaults Ifx 3.97 Ifxz 0 Ipx 1.96 Ipz 0.55 Ipxz 0.26 Irx 7.43

Irz 11.63 Irxz 7.4 irwx 0.4 irwy 0.65 ifwy 0.58 iry 0.41)

;;; Geometric parameters:

(set-names Rr "Rear wheel radius"

Rf "Front wheel radius"

hh_cp "Centre of pressure height")

(set-defaults aa 0.527 bb 0.628 bb_b 0.62 bb_p 0.28 ee 0.049 hh 0.438

hh_b 0.33 hh_p 0.4 hh_s 0.8 jj 0.527 ll 0.807

Rf 0.336 Rr 0.321 ss 0.77 trail 0.094

epsilon 0.47 epsilon1 1.435 hh_cp 0.33)

;;; Frame flexibility and rider parameters:

(set-names k_v "steering head lateral stifness coefficient"

D_v "steering head lateral damping coefficient"

k_lamda "rear wheel assembly twist stiffness coefficient"

D_lamda "rear wheel assembly twist damping coefficient"

k_gamma "steering head torsional stiffness coefficient"

D_gamma "steering head torsional damping coefficient"

k_zita "rider upper body restraint stiffness coefficient"

D_zita "rider upper body restraint damping coefficient"

k_steer "steer stiffness coefficient"

D_steer "steer damping coefficient")

(set-defaults k_v "1.04*(10**6)" D_v 456 k_lamda 46000 D_lamda 17.7

k_gamma 61200 D_gamma 44.1 k_zita 10000 D_zita 156)

(unless *hands-on* (set-defaults Ifz 0.71 k_steer 0.0 D_steer 1.0))

2It can be seen from the signs of Ipxz and Irxz that Autosim uses a negative sign convention, as compared with
[2], for products of inertia.

14

4 SIMULATIONS AND RESULTS

(when *hands-on* (set-defaults Ifz 0.91 k_steer 50.0 D_steer 6.0))

;;; Tyre parameters:

(set-names @Cfvf "Front Tyre Cornering Stiffness"

@Cfvr "Rear Tyre Cornering Stiffness"

@Cmvf "Front Tyre Aligning Moment Stiffness"

@Cmvr "Rear Tyre Aligning Moment Stiffness"

@Cf1 "Front Tyre Camber Stiffness"

@Cr1 "Rear Tyre Camber Stiffness"

@Cf2 "Front Tyre Aligning Moment Camber Coefficient"

@Cr2 "Rear Tyre Aligning Moment Camber Coefficient"

@Cf3 "Front Tyre Overturning Moment Coefficient"

@Cr3 "Rear Tyre Overturning Moment Coefficient"

Crr1 "Tyre rolling resistance coefficient 1"

Crr2 "Tyre rolling resistance coefficient 2")

(set-defaults Crr1 0.018 Crr2 "6.8*10**(-6)")

;;; Other parameters:

(set-names Dc "Aerodynamic Drag Coefficient"

Lc "Aerodynamic Lift Coefficient")

(set-defaults Dc 0.377 Lc 0.05 vu 53.5)

(unless *linear* (set-defaults step 0.001 stopt 20 iprint 10 rid_tq 0

ki 300 kp 300 "tu(yaw_fr,1)" vu "rq(rf)" 0.005))

The *hands-on* ag is used to choose the appropriate values for the parameters corre-
sponding to the hands-o� and hands-on cases. Strictly speaking, for the hands-on case, the
reaction from the steering restraint torque (steer tq) comes from both the Steering Head
(st hd) and the Rider Upper Body (ubr) and not from the Steering Head as in the hands-o�
case. The last line sets some default values relevant only to the nonlinear model.

� Write up �les:

(unless *linear*

(write-to-file write-sim "bk_94_ns.f")

(write-to-file print-default-positions "positions.txt")

(write-to-file print-default-directions "directions.txt")

(write-to-file print-parameters "parameters.txt")

)

(when *linear*

(write-to-file write-matlab "bk_94_ls.m")

)

The FORTRAN �le is written to bk 94 ns.f and the �les positions.txt, directions.txt
and parameters.txt are used to store the default positions, directions and parameters if the
linear ag is set to nil. This information is useful as a debugging aid. If the linearised
model is asked then the MATLABTM �le bk 94 ls.m is written.

4 Simulations and Results

The nonlinear code is used to generate the nonlinear equations of motion in the form of a FOR-
TRAN code. This code can then be used to generate time histories of the various dynamic
variables (positions, velocities, accelerations, forces and so on). A typical plot of a time history
for the hands-o� case is shown in Figure 6. In this case the forward speed is held constant at 53.5
m
s
and there is an initial non-zero roll angle of 0.005 rad. The z -rotational speed of ff relative to

st hd undergoes an initial transient and then settles to zero, because the system is stable in the
straight running con�guration for this value of forward speed. This transient has two frequency
components, one being fast and the other slow. The slow mode corresponds to the weave mode

15

A ERRATA IN THE \SHARP 1994" MOTORCYCLE MODEL

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 0.5 1 1.5 2 2.5 3

z rot. speed of ff rel. to st hd

z

ro
t.
sp
ee
d
o
f
f
f

re
l.
to
s
t

h
d

-
r
a
d

s

Time - sec

Figure 6: z rot. speed of ff rel. to st hd.

of the motorcycle and has a frequency of about 22.85 rad
s
, while the high frequency mode is the

so called wobble mode which has a frequency of about 59.14 rad
s
. We refer to Appendix A in the

report [4] for a detailed discussion of these modes.
The linear code is used to generate the linearised equations of motion about straight running

equilibrium conditions. In the equilibrium state, the motorcycle is moving with constant forward
speed and with zero roll, yaw, steer and twist angles. Figure 7 shows root-locus plots in which
speed is the varied parameter. The �rst part of Figure 7 is a plot for the hands-o� case, while
the second part of Figure 7 is a root-locus plot for the hands-on case. These �gures agree with
Figures 3 and 4 in the original paper [2].

5 Conclusions

The aim of this work is to demonstrate that the results presented in [2] can be reproduced by the
multi-body modelling code Autosim. As is the case with many nonlinear systems, local stability is
investigated via the eigenvalues of linearised models that are associated with equilibrium points. In
our case the linearisations were taken about constant-speed straight running conditions. Autosim
can be used to generate time histories from the nonlinear equations of motion, and most usefully,
it can be used to generate linearised state-space models in symbolic form. The linearised models
can be imported into MATLABTM for evaluation. A typical local stability study will require time
histories from the nonlinear model and the symbolic linearised equations of motion generated by
the linear Autosim code. The nonlinear equations are stored in the FORTRAN �le bk 94 ns.f

and the linearised equations of motion are stored in the MATLABTM �le bk 94 ls.m. In order
to construct the root-loci in Figure 7, two lines have to be removed from this code: the �rst line
which is a clear statement and second a line containing the VU=53.5 statement. The modi�ed
version of the MATLABTM �le is stored in bk 94 ls.m and the diagrams in Figure 7 may be
generated using this �le and the hand-written plotting code bk 94 rootlocus.m.

A Errata in the \Sharp 1994" motorcycle model

The following errors appear in the original paper [2]:

16

REFERENCES REFERENCES

−40 −35 −30 −25 −20 −15 −10 −5 0 5
0

10

20

30

40

50

60

−40 −35 −30 −25 −20 −15 −10 −5 0 5
0

10

20

30

40

50

60
Hands-on

Real parts

Real parts

Im
a
g
in
a
ry
p
a
rt
s

Im
a
g
in
a
ry
p
a
rt
s

Hands-o�

Wobble

Wobble

Weave

Weave

Figure 7: Root-loci for the weave and wobble modes of baseline machine and rider for the speed
range 5 - 53.5 m

s
.

� The Rear Frame moments and products of inertia must be interchanged with those of the
Rider Upper Body.

� The tyre model polynomials are corrected in this report so that they �t the graphs given in
[2].

More errors and misprints appear in [2] but they are not included here since they are irrelevant
to our case.

References

[1] R. S. Sharp, \The stability and control of motorcycles", Jour. Mech. Eng. Sci., Vol. 13, No.
5, 1971, pp. 316-329.

[2] R. S. Sharp, \Vibrational modes of motorcycles and their design parameter sensitivities",
Vehicle NVH and Re�nement, Mech. Eng. Publ., London, 1994, pp. 107-121.

[3] Mechanical Simulation Corporation, \Autosim 2.5+ Reference Manual", 1998,
http://www.trucksim.com.

[4] S. Evangelou and D.J.N. Limebeer, \Lisp programming of the \Sharp 1971" motorcycle
model", 2000, http://www.ee.ic.ac.uk/control/motorcycles.

17

