
ANIMATION OF THE \SL2001" MOTORCYCLE MODEL

Simos Evangelou and David J.N. Limebeer

Department of Electrical and Electronic Engineering, Imperial College of Science,
Technology and Medicine, Exhibition Road, London SW7 2BT, UK.

e-mail:d.limebeer@ic.ac.uk web page: http://www.ee.ic.ac.uk/control/motorcycles

Summary

The task of an animator is to generate a visual representation of the dynamic opera-
tion of complex multi-body systems such as road vehicles. This is done by generating a
wire-frame image of the constituent parts of the mechanism and then \driving" it with
the output of a simulation programme. The Autosim animator can be downloaded from
http://www.trucksim.com/animator/index.html and is the one we will make use of in this
report. The animator must be supplied with two �les. The �rst is a pars�le (PAR) that
contains keyword-based text data that de�nes all the mechanism parts together with other
information such as programme settings. The second �le is an ERD �le generated by an
Autosim simulation programme. It contains time history data associated with each of the
vehicle bodies. The time histories comprise six degrees-of-freedom data associated with each
body in global co-ordinates. The time histories in the ERD �le are used to drive the various
parts of the motorcycle. The aim of this report is to supplement, in a motorcycle speci�c
context, the animator description that can be found in Chapter 6 of the CarsimEd manual.
The manual can be downloaded from http://www.trucksim.com/carsimed/index.html. The
vehicle used to demonstrate the animator is the \SL2001" motorcycle described in [3].

1 Introduction

Various motorcycle models have already been developed in the simulation code Autosim [4]. The
simplest of these contains four bodies [1], while the most complex is the \SL2001" model [3] that
contains seven bodies.

As the complexity of these motorcycle models increase, it becomes more and more diÆcult to
visualise the overall dynamic behaviour of the vehicle. The purpose of the animator is to assist
with the visualisation of the machine's dynamic behaviour via a properly scaled wire-frame image
that is driven by simulator data. It is hoped this animation facility will prove to be a useful tool
that will assist with the analysis of some of the more complex behaviours of the machine. The
animation is essentially a sequence of images that are updated several time per second; this process
is reminiscent of the images that can be seen with a video camera.

2 Description of the model

The motorcycle under study is represented diagrammatically in Figure 1. The body structure
diagram of the vehicle that was used for the purpose of writing the Autosim code is taken from
[3] and is shown in Figure 2. As is usual in our work, the bodies are arranged in a parent-child
relationship.

3 Program codes

As shown in Figure 3, two �les are required to run the animation: the pars�le and the simulation
�le. The �rst �le is a keyword-based text �le that contains the de�nitions of all the parts of the
model, their shape information and other information such as program settings. Typically, this �le
has the extension PAR. The simulation �le, which is an ERD �le generated by Autosim, contains

1



3 PROGRAM CODES

z
p1

p2

p3

p4

p5

p6
p7

p8

p10

p11p12

p13

p14

p9

Steer axis
Twist axis

aero

main

rider
upper
body

n0

x’

y’

z’
ε

xy

Figure 1: Diagrammatic representation of the motorcycle.

rear wheel; rotate y front frame steer; rotate z'

front suspension; translate z'

front wheel; rotate y'

?

?

?

? ?

?

?

?

Inertial frame

yaw frame; translate(x,y), rotate z

main body; translate z, rotate (y x)

swing arm; rotate y upper body; rotate x front frame twist; rotate x'

?

Figure 2: Body Structure Diagram of the \SL2001" motorcycle.

2



3 PROGRAM CODES 3.1 Pars�le

Animator

Animator set up and shape

PAR file
Motion information from

a simulation program

ERD file

information

Figure 3: Animator input �les.

the simulation responses in global coordinates. In general, the motion of each body requires three
translational data sequences and three rotational data sequences. These responses are used by the
animator to drive the various parts of the motorcycle as de�ned in the pars�le.

3.1 Pars�le

The animator creates images that are based on a set of visible objects that include a grid and wire-
frame shapes that are de�ned via a sequence of connected lines. Some of the wire-frame objects
are organized into groups that move together. A group of points and objects that maintain a
�xed relationship to each other (i.e. that constitute a rigid body) is called a reference frame.
Although a reference frame might move and rotate, the spatial relationships between the objects
in the reference frame do not change relative to each other. In the animator all motions are
associated with reference frames and their movement is de�ned by up to six variables from the
ERD �le (three translational freedoms and three rotations (Euler angles) in global coordinates).
The reference frames that are used to de�ne the motorcycle model are shown in Figure 4. Each
reference frame has associated with it a group of shapes that are used to build up a detailed
visual representation of the motorcycle. As the inputs to the animator are processed, each shape
is moved along with its particular reference frame. As the animator is reading input data, the
active reference frame and its associated shapes are moved with that frame.

A shape is a set of points connected by straight lines and each point is de�ned by a set of three
coordinates (X-Y-Z). The animator starts with the �rst point and draws connecting lines to each
of the following points in the list. All the coordinates are assumed to be in a local coordinate
system that is associated with the active reference frame. Figure 5 shows the shapes associated
with each reference frame.

The axis orientation used by the animator follows the ISO 8855 standard instead of SAE J670e
used by Autosim. ISO 8855 has X pointing forwards, Z pointing upwards and Y pointing towards
the left-hand side of the vehicle. In contrast, SAE J670e has Z pointing downwards, X pointing
forwards and Y pointing towards the right-hand ride on the vehicle. All coordinates in the output
�le are in SI units if units have been set to \SI" in the Autosim LISP code. Both variable and static
coordinates can be converted using scale factors. All animator Euler angles must be expressed in
degrees and so scale factors are used to convert the Euler angles generated by Autosim to degrees,
since the variables in the ERD �le are in radians. If, however, (si) is replaced by (mks) in the
Autosim code angles will be in degrees.

3



3 PROGRAM CODES 3.1 Pars�le

rear wheel

main frame

global reference frame

swinging arm

front frame

front suspension

rider upper body

front wheel

Figure 4: Reference Frames of the motorcycle.

rear wheel

main frame right
main frame connecting lines
fairing left
fairing right
fairing connecting lines
exhaust
rider lower body left
rider lower body right

swinging arm left
swinging arm right

front frame left
front frame right
front frame connecting lines
handlebar left
handlebar right

front suspension right
front suspension left

rider upper body left
rider upper body right
rider upper body connecting lines

front wheel1
front wheel2
front wheel3
front wheel4
front wheel5
front wheel6
front wheel7

rear wheel1
rear wheel2
rear wheel3
rear wheel4
rear wheel5
rear wheel6
rear wheel7

global reference frame grid

main frame

swinging arm

front frame

front suspension

rider upper body

front wheel

main frame left

Figure 5: Groups of shapes.

4



3 PROGRAM CODES 3.1 Pars�le

The pars�le commands are described next and we recommend that the reader studies these in
conjunction with the motorcycle pars�le bk sl2001.par:

� Add the 2D ground-plane grid:

Keyword Value Description

add grid <none> tells animator to draw a reference
grid

set interval x numbers spacing used for drawing the grid
set interval y lines
set color color name color used for the grid lines
set min x numbers size of the grid in the X and Y
set max x directions
set min y

set max y

Table 1: Keywords for describing the grid

A grid �xed in the global reference frame is drawn. Table 1 lists the keywords for describing
the grid.

� Specify the camera settings:

The camera point determines the location of the observer and the look point determines the
point that the camera is aimed at. Both of these points are shown in Figure 6. At each time

Origin of global 
reference frame

Origin of moving 
reference frame 2D projected image

Camera 
point

Look point

Focal length

Figure 6: Geometry of the camera point and the look point.

instant, the animator generates a 2D image based on the relationships between the location
and orientation of the simulated vehicle and the camera and look points. Table 2 lists the
keywords that are used to specify the camera settings.

� All the reference frames with all the shapes associated with them as shown in Figure 5 are
added by making use of the keywords in Table 3.

The keyword add reference frame has three e�ects:

1. It starts the scope of a new reference frame.

5



3 PROGRAM CODES 3.1 Pars�le

Keyword Value Description

set camera reference frame name of reference reference frame in which the
frame camera is situated

set camera x numbers coordinates of the camera
set camera y location in its reference frame
set camera z

set lookpoint reference frame name of reference reference frame in which the
frame look point is situated

set lookpoint x numbers coordinates of the look point in
set lookpoint y its reference frame
set lookpoint z

set focal length number focal length of camera (distance
from point of viewer to 2D
image on screen)

set use cpu clock on or off option to slow animation down
to real time by using the clock

set superimpose on or off option to superimpose all
images{don't erase between
animation frames

Table 2: Keywords for the animator camera settings

Keyword Value Description

add reference frame name of new gives name to new reference frame and starts
reference frame its scope

set x name names of variables speci�es the variables to be read from the
set y name in ERD �le ERD �le and associated with X,Y,Z
set z name coordinates of the reference frame
set pitch name names of variables speci�es the variables to be read from the
set roll name in ERD �le ERD �le and associated with Euler angles
set yaw name

set scale var x numbers scale factors for data read from the ERD �le
set scale var y

set scale var z

set scale var roll

set scale var pitch

set scale var yaw

set offset var x numbers o�sets added to coordinates and Euler angles
set offset var y

set offset var z

set offset var roll

set offset var pitch

set offset var yaw

set euler angles yaw pitch roll sequence of rotation by Euler angles used to
or de�ne orientation of the reference frame
yaw roll pitch

Table 3: Keywords associated with reference frames

6



3 PROGRAM CODES 3.1 Pars�le

2. It ends the scope of the previous one.

3. It assigns a name to the new frame that can be used with the set camera reference frame

and set lookpoint reference frame keywords. Each reference frame must have a
unique name.

The scope of the reference frame begins when the keyword add reference frame is encoun-
tered and continues until this keyword is used again to start the scope of a di�erent reference
frame. All of the keywords shown in Table 3 are repeated several times in the parsile. Each
time the value associated with the keyword is applied, the current reference frame is a�ected.

The position of a reference frame is de�ned by six variables: the three coordinates (X, Y,
and Z), and three Euler angles. The animator reads the six variables from the output �les
generated by the simulation. The six keywords used to specify the ERD �le short names
determine how the three coordinates and the three Euler angles are de�ned. After reading
the six variables, each coordinate and Euler angle is calculated via a relationship of the form:

coordinate = Co + C*SFc

angle = Ao + A*SFa

where C and A are the translation and angle variables obtained from the ERD �le. The
constants Co and Ao are o�sets while SFa and SFc are scale factors (gains). The o�sets and
scale factors are speci�ed by the keywords shown in Table 3. The scale factors are often
used to convert angles from radians to degrees. The keyword set euler angles is used to
specify the type of transformation used. There are two options: yaw roll pitch is used for
rolling-wheel reference frames and yaw pitch roll is used for all the other vehicle reference
frames.

Within the scope of a particular moving frame, the associated parts (shapes) are speci�ed.
A part is a set of points connected by straight lines. Each point is de�ned by a set of three
coordinates (X-Y-Z). The animator starts with the �rst point and draws connecting lines
to each of the following points in the list. All the coordinates are assumed to be in a local
coordinate system associated with the active reference frame. The keyword add part has
the e�ect of starting the scope of a new object. It also has the e�ect of ending the scope of
the previous object. However, it does not a�ect the scope of the current moving reference
frame. All the keywords relevant to shapes are de�ned in Table 4. The list of coordinates

Keyword Value Description

add part name of part starts scope for new part
set color color name color used for lines drawn to connect the

points in this part
set line width integer sets thickness of lines drawn for this part
set coordinates list of coordinates: 3 coordinates of this points making up the
end coordinates numbers per line shape
set scale x numbers scale factors applied to all coordinates in
set scale y the part
set scale z

set offset x numbers o�sets added to all points in the part
set offset y

set offset z

Table 4: Keywords for describing parts

begins with a line containing the keyword set coordinates. Each following line contains an
X, Y, and Z coordinate, separated by white space, until the list ends with a line containing
the keyword end coordinates. The listed coordinates for the part are transformed by the
equations:

xnew = xo + sx x

7



3 PROGRAM CODES 3.2 Example reference frame

ynew = yo + sy y

znew = zo + sz z

where xo, yo, and zo are o�sets and sx, sy, and sz are scale factors speci�ed with the keywords
set offset x, set offset y, set offset z, set scale x, set scale y and set scale z.

3.2 Example reference frame

The purpose of this section is to show how each motorcycle component is inserted one-by-one into
the animation. We use the front wheel to explain the procedure. The remaining components are
added in a similar manner using the ideas of reference frames, shapes and global coordinates.

To begin, it should be noted that each of the wheels is made up of a number of parts that
are assembled using the add part keyword. As indicated in Figure 5, the wheels are made up of
seven parallel circles of di�erent diameters. The diameters are chosen to correctly represent the
tyre cross-sectional pro�ling. In the pars�le given here, the �rst part is the central circle. Copies
of this circle are then scaled and shifted to generate the other six. These seven parts can then
be grouped together under the front wheel reference frame to form the front wheel. The origin
of this reference frame is at the centre of the detached wheel as shown in Figure 7. The shapes

Figure 7: Front wheel example.

that make up the front wheel are designed so that the centre of the wheel is at the centre of the
reference frame. The reason for this is that all the Euler angles of the reference frame are de�ned
as rotations about axes through the origin of the current reference frame. It is essential that this
setup is made precisely compatible with the Autosim code that will be used to generate the data
that drives the animation. For example, this means that if the front wheel is to be designed to
rest on the ground plane in the nominal con�guration, in the same way that the rear wheel does in
Figure 7, then the pitch rotation will rotate the wheel around the ground contact point and not the
wheel hub. Any yawing rotation must occur around the wheel centre. Once all the reference frame
constituent parts have been designed with the same considerations in mind, appropriate output
variables in the ERD �le are linked to the reference frame in order that it is driven properly. In
our case all the reference frames are constructed around the Autosim body centres, because this
makes them easy to link to the driving variables that are stored in the ERD �le. Obviously, the
�nal aim is to create an image of the motorcycle that has all its components correctly dimensioned
and correctly placed in relation to each other through the motion being studied. In the case of
the front wheel, the output variables are fw xo, fw yo and fw zo for the translational movements,
while fw rol, fw pit and fw yaw are used for the roll, pitch and yaw rotations respectively. These
variables are calculated by the simulation programme that is derived from the Autosim lisp code.

8



3 PROGRAM CODES 3.3 Lisp code

The lisp commands that are used to �nd the animator driving variables in global coordinates are
discussed next.

3.3 Lisp code

The following lisp instructions must be added to bk sl2001.lsp code that describes the \SL2001"
model. These commands are used to calculate the output variables needed by the animator:

� Main frame:

(setsym main_x "dot(pos(yaw_fr0,n0),[nx])")

(setsym main_y "dot(pos(yaw_fr0,n0),[ny])")

(setsym main_z "-dot(pos(main0,n0),[nz])")

(setsym main_yaw "rq(yaw_fr)")

(setsym main_pit "-rq(main,1)")

(setsym main_rol "-rq(main,2)")

(add-out "@main_x" "main_x")

(add-out "@main_y" "main_y")

(add-out "@main_z" "main_z")

(add-out "@main_yaw" "main_yaw")

(add-out "@main_pit" "main_pit")

(add-out "@main_rol" "main_rol")

The setsym commands de�ne the global variables required by the animator and the add-out
commands add them to the output variables that are stored in the ERD �le. The �rst three
lines take the projections of the position vector between the origin of the yaw frame and the
origin of the inertial frame in the three standard directions. These projections are used to
calculate the three translational coordinates in the global reference frame n. The next three
lines de�ne the global angles of rotation of the main frame. The z-component of position
and two of the angles of rotation have minus signs, because the orientations of the axes in
the animator and Autosim follow di�erent standards. Note that some of the variables are
already calculated by Autosim as standard outputs. However, these variables have been
rede�ned for completeness. The remaining bodies are treated in much the same way.

� Swinging arm:

(setsym swg_arm_x "dot(pos(swg_arm0,n0),[nx])")

(setsym swg_arm_y "dot(pos(swg_arm0,n0),[ny])")

(setsym swg_arm_z "-dot(pos(swg_arm0,n0),[nz])")

(setsym swg_arm_yaw "euler(swg_arm,1,n)")

(setsym swg_arm_pitch "-euler(swg_arm,2,n)")

(setsym swg_arm_roll "-euler(swg_arm,3,n)")

(add-out "@swg_arm_x" "sa_x")

(add-out "@swg_arm_y" "sa_y")

(add-out "@swg_arm_z" "sa_z")

(add-out "@swg_arm_roll" "sa_rol")

(add-out "@swg_arm_pitch" "sa_pit")

(add-out "@swg_arm_yaw" "sa_yaw")

� Rider upper body:

(setsym ubr_x "dot(pos(ubr0,n0),[nx])")

9



3 PROGRAM CODES 3.3 Lisp code

(setsym ubr_y "dot(pos(ubr0,n0),[ny])")

(setsym ubr_z "-dot(pos(ubr0,n0),[nz])")

(setsym ubr_rol "-(rq(main,2)+rq(ubr))")

(add-out "@ubr_x" "ubr_x")

(add-out "@ubr_y" "ubr_y")

(add-out "@ubr_z" "ubr_z")

(add-out "@ubr_rol" "ubr_rol")

In the case of the rider's upper body it is only necessary to calculate the roll angle, because
the pitch and yaw angles for this body are the same as those used for the main frame. We
observe that the roll angle is the sum of the roll angle of the main frame and the roll angle
of the rider's upper body with respect to the main frame. It is possible to simply sum up
these angles, because the series of Euler angles used is yaw pitch roll and roll is the last
rotation.

� Front frame:

(setsym ff_x "dot(pos(ff_str0,n0),[nx])")

(setsym ff_y "dot(pos(ff_str0,n0),[ny])")

(setsym ff_z "-dot(pos(ff_str0,n0),[nz])")

(setsym ff_rol "-euler(ff_str,3,n)")

(setsym ff_pit "-(euler(ff_str,2,n)-epsilon)")

(setsym ff_yaw "euler(ff_str,1,n)")

(add-out "@ff_x" "ff_x")

(add-out "@ff_y" "ff_y")

(add-out "@ff_z" "ff_z")

(add-out "@ff_rol" "ff_rol")

(add-out "@ff_pit" "ff_pit")

(add-out "@ff_yaw" "ff_yaw")

The front frame variables are calculated as before. Note that epsilon is subtracted from the
pitch angle in line 5. This is because front frame is initially inclined at an angle of epsilon (�)
relative to the inertial reference frame. This adjustment could also be made in the pars�le,
but this is a matter of taste.

� Rear wheel:

(setsym rw_xo "dot(pos(rw0,n0),[nx])")

(setsym rw_yo "dot(pos(rw0,n0),[ny])")

(setsym rw_zo "-dot(pos(rw0,n0),[nz])")

(setsym rwlong "cross([swg_army],[nz])")

(setsym rw_pit_i "angle(@rwlong,[swg_armx])")

(setsym rw_rol "-angle([swg_army],dplane([swg_army],[nz]))")

(setsym rw_pit "-(-@rw_pit_i+rq(rw))")

(add-out "@rw_xo" "rw_xo")

(add-out "@rw_yo" "rw_yo")

(add-out "@rw_zo" "rw_zo")

(add-out "@rw_rol" "rw_rol")

(add-out "@rw_pit" "rw_pit")

10



3 PROGRAM CODES 3.4 Running the animator

It will be noted that the scheme here is di�erent from the previous one used to calculate the
Euler angles, since these now involve angles that are outside the range ��. In particular,
the pitch angle of the wheel undergoes angular wind-up (it keeps rotating in one direction
and consequently the pitch angle continues to grow). The series of rotations for the wheels
is yaw roll pitch. It can be seen that roll angle is calculated from �rst principles. The
quantity -rw pit i is the initial pitch angle of the wheel produced by the rotation of the
swinging arm. The pitch angle of the wheel is consequently the sum of this angle and rq(rw).
The negative sign is required because Autosim and the animator use di�erent standards. The
yaw angle of the wheel need not be calculated because it is the same as that of the main
frame.

� Front wheel:

(setsym fw_xo "dot(pos(fw0,n0),[nx])")

(setsym fw_yo "dot(pos(fw0,n0),[ny])")

(setsym fw_zo "-dot(pos(fw0,n0),[nz])")

(setsym fwlong "cross([ff_susy],[nz])")

(setsym fw_pit_i "angle(@fwlong,[ff_susx])")

(setsym fw_rol "-angle([ff_susy],dplane([ff_susy],[nz]))")

(setsym fw_pit "-(-@fw_pit_i+rq(fw))")

(add-out "@fw_xo" "fw_xo")

(add-out "@fw_yo" "fw_yo")

(add-out "@fw_zo" "fw_zo")

(add-out "@fw_rol" "fw_rol")

(add-out "@fw_pit" "fw_pit")

3.4 Running the animator

To run the animator the following items are needed:

� The animator executable �le animator.exe (this can be downloaded from
http://www.trucksim.com/animator/index.html).

� The parsile bk sl2001.par (this can be downloaded from our website
http://www.ee.ic.ac.uk/control/motorcycles).

� The simulation �les example.erd and example.bin. These �les can be downloaded from
our website, or they can be generated by patching the Lisp code bk sl2001.lsp. The
instructions that generate the required data in global coordinates should be placed just
before the (finish) command. A new data �le must be generated by loading the modi�ed
Autosim code and running the associated simulation �le.

The animation can be run as follows:

� Start the animator by running the executable �le animator.exe.

� Go to the �le roll-down menu in the animator window, click on Open Pars�le and select the
pars�le bk sl2001.par.

� Find and select the ERD �le (example.erd) in the same window.

� After all the �les are loaded the animation can be started by going to the Animation roll-
down menu and clicking on Start From Beginning.

11



REFERENCES REFERENCES

References

[1] S. Evangelou and D.J.N. Limebeer, \Lisp programming of the \Sharp 1971" motorcycle
model", 2000, http://www.ee.ic.ac.uk/control/motorcycles.

[2] S. Evangelou and D.J.N. Limebeer, \Lisp programming of the \Sharp 1994" motorcycle
model", 2000, http://www.ee.ic.ac.uk/control/motorcycles.

[3] R.S. Sharp and D.J.N. Limebeer, \A motorcycle model for stability and control analysis",
Multibody System Dynamics, 2000.

[4] Mechanical Simulation Corporation, \Autosim 2.5+ Reference Manual", 1998,
http://www.trucksim.com.

12


