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Abstract

This paper proposes a new idea, shaping the control signal, and generalizes the time-delay-filter-based deadbeat
control for processes with dead time to two-level control so that the controller saturation is avoided. The controller
mimics experienced manual operations to provide a two-level control signal. At first, the controller outputs a value close
to the maximal value and then the controller outputs a smaller value to maintain the steady-state output at the set point.
The system output reaches the steady state in finite time, which is explicitly determined by the upper bound of the control
output and is independent of the controller and (almost) of the sampling period. The disturbance response can be freely
tuned according to the desired phase or gain margin. Three examples are given to show the effectiveness of the proposed
controller.

Index Terms: time delay filter, process with dead time, deadbeat control, two-level control, control signal shaping

1 Introduction

Regulation is often the main task of most controllers used in industry, but in many cases it is also very important to obtain
a fast response to set-point changes. These two control problems can be decoupled using the two degree-of-freedom
(2DOF) techniques, see [1, 2, 3] for delay-free systems and [4, 5, 6] for delay systems, where a pre-filter is frequently
used as the second degree-of-freedom to weight the set-point change so that the set-point response is desirable. Some pre-
filters having particular properties have been studied in the literature. A variable set-point weighting scheme was proposed
in [7], where adaptive techniques were used to adjust the set-point weighting. A deadbeat set-point response was obtained
by using a time-delay filter in [8], where the reference signal for the closed-loop feedback system is converted to a pulse-
step signal from the original step signal. An optimal control strategy, called pulse-step control, was proposed in [9] to
obtain a settling time close to the time at which the impulse response reaches its maximum (when there is almost no
input constraint). This is a feedforward law used with a proportional-integral-derivative (PID) feedback controller for
regulation. The major drawback of the approach is that a set of nonlinear equations has to be solved to obtain the optimal
switching times, which complicates the design. A minor drawback of the proposed controller is that it is only available
for systems having a relative degree higher than 2, which means not directly applicable for most of the chemical processes
modeled as a first-order plus dead-time (FOPDT) model.

An important issue when considering to obtain a fast response is that the input constraint has to be taken into account,
at least to some extent. The approach proposed in [8] offers a deadbeat set-point response, which is very fast. However,
there might be some problems in practice when using this control strategy. First of all, the first pulse in the converted
set-point has a relatively large amplitude. This might cause the control signal saturated and the system performance
degraded. Secondly, the set-point response was designed to reach the desired output in one sampling period, in addition
to the inherent dead time. This might push the controller too hard and, intuitively, it might be difficult to obtain such a fast
response. In this paper, we add more freedom to the controller and explicitly consider the controller saturation in design
by shaping the control signal. The above-mentioned two drawbacks are avoided and hence the proposed control strategy
is more practical. The response is still deadbeat and the deadbeat time is dependent on the maximal control output. A
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prominent property of the controller is that it provides a two-level control signal, which mimics experienced manual
operations: the control outputs a value close to the maximal value to provide the largest acceleration for the process at
first and then the control outputs a smaller value to keep the system output at the set point. This is done by designing
the numerator of the feedback controller. The denominator of the feedback controller is designed to guarantee the system
stability. In this paper, the feedback controller is designed to be a PI controller, of which the parameter can be freely tuned
according to the desired gain or phase margin.

The advantages of the two-level control are:

• decoupled design for set-point and disturbance responses;

• fast deadbeat set-point response, no overshoot;

• easy tuning of the disturbance response;

• controller saturation is explicitly considered.

The rest of the paper is organized as follows. The controller is designed in Section 2 to shape the control signal to have
two levels, to guarantee the stability of the closed-loop system and to obtain a good disturbance response. Three examples
are given in Section 3 to show the design and the simulation results. Conclusions are made in Section 4.

2 Controller design

Consider the following FOPDT model:

G(s) =
Ke−τs

Ts + 1
,

where K is the static gain, τ is the dead time and T is the apparent time constant. The control system under consideration
is shown in Figure 1, where r′ is the converted set point and e is the error signal (which is not r − y here). The controller
consists of a feedback controller C(z) and a feedforward controller F (z). Taking into account the sampling-hold effect,
the generalized plant is

G(z) = K
1 − a

z − a
z−l,

where l = τ/Ts is a positive integer and a = e−Ts/T . Assume that the feedback controller is

C(z) =
(1 − az−1)N(z)

D(z)
, (1)

of which the order of the polynomials N(z) and D(z) in z−1 is n and m, respectively, then the closed-loop transfer
function of the feedback system is

Tyr(z) = F (z)
C(z)G(z)

1 + C(z)G(z)

= F (z)
K(1 − a)N(z)z−(l+1)

D(z) + K(1− a)N(z)z−(l+1)
(2)

and the transfer function from the set point r(z) to the control signal u is

Tur(z) = F (z)
C(z)

1 + C(z)G(z)

= F (z)
(1 − az−1)N(z)

D(z) + K(1 − a)N(z)z−(l+1)
. (3)

It is not necessary to place a zero z = a in the controller (1). However, this does not affect the explanation of the main
idea in this paper and, as can be seen later, this does simplify the controller design and it is helpful for the system stability
and the performance.

Simply, F (z) can be chosen to cancel the closed-loop poles provided that the closed-loop system is stable. Hence, the
function of D(z), N(z) and F (z) is now clear: D(z) can be designed to guarantee the stability of the closed-loop system;

2



G(s)ZOHC(z)F (z) i i- - - - - - -?

��

6

d(s)

y(s)r(z) r′ e u

−

Ts

Figure 1: The control structure

F (z) can be designed to obtain the desired set-point response and N(z) can be chosen to shape the control signal as well
as the set-point response.

The time-delay filter F (z) can be designed to be

F (z) =
D(z)

K(1 − a)
+ N(z)z−(l+1). (4)

As a result, the two transfer functions (2) and (3) become

Tyr(z) = N(z)z−(l+1) (5)

and

Tur(z) = N(z)
1 − az−1

K(1 − a)
. (6)

Since the output y is expected to start just after the inherent dead time, N(0) cannot be zero. As a result, D(0) cannot be
zero in order to guarantee the causality of the controller.

2.1 Shaping the control signal

In order to obtain a fast transient response, the expected control signal (with respect to a step set-point change) is shown
in Figure 2. This is to mimic the experienced manual operations: the controller outputs the maximal umax to drive the
plant as hard as possible at the early stage and then the controller outputs a smaller value to keep the system output at the
set point. This is called a two-level signal. Assume that the moment at which the change occurs is (n + 1)Ts, then the
form of this signal can be approximately obtained by the following transfer function (with respect to a unit-step set point):

1 − an+1z−n−1

K(1 − an+1)
. (7)

The amplitude of the first level of the control signal varies when the order of N(z), i.e. n, changes. For a given umax, the
following condition has to be satisfied:

1

K(1− an+1)
≤ umax, (8)

which means

n ≥
T

Ts
ln

Kumax

Kumax − 1
− 1. (9)

The smaller the value of the allowed umax, the larger the value of n; the larger the ratio T
Ts

, the larger the value of n.
Hence, this parameter can be used to meet the requirement of the controller saturation. Surprisingly, n does not depend
on the dead time of the plant.

According to (6) and (7), the desired N(z) can be derived to be

N(z) =
1 − an+1z−n−1

1 − az−1
·

1 − a

1 − an+1
=

∑n
i=0 aiz−i

∑n
i=0 ai

. (10)

Obviously, N(z) satisfies the following constraint:

N(1) = 1,
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Figure 2: The desired control signal

which guarantees the zero steady-state error for the set-point response, according to (5). Moreover, the set-point response
reaches the steady state at

(l + n + 1)Ts ≈ τ + T ln
Kumax

Kumax − 1
,

where the “≈” is due to the approximate selection of n in (9). For a given plant, this time is independent of the controller
and the sampling period and depends on the maximal controller output umax only. In other words, this is an inherent
characteristic of the system.

There is no braking control (a large negative action, which is common in the time-optimal control strategy) in the
control signal. This is because: (1) there is no need for such a brake here because the response reaches the steady state in
finite time and there is no overshoot; (2) the benefit of a large negative action is very small when umax is not very large
[9], which is the common case, and (3) the control strategy is more sensitive when there is a large negative control action
[10].

2.2 Stability of the closed-loop system

There are many options to design the feedback controller, in particular D(z), because the function of D(z) is to guarantee
the system stability. One simple option is to choose D(z) to be an integrator, i.e.

D(z) =
1 − z−1

KI
,

where KI is an integral coefficient such that the steady-state error with respect to step disturbances is 0. However, this
brings a sluggish or oscillatory disturbance response. A better design is to choose

D(z) =
1 − z−1

KI
N(z) (11)

to obtain a better stability margin and a faster disturbance response. Another advantage by doing so is that the stability
analysis and the parameter tuning are considerably simplified. This choice of D(z) offers the following PI controller:

C(z) =
(1 − az−1)N(z)

D(z)
= KI

1 − az−1

1 − z−1
, (12)

which is, by chance, almost the same as the one proposed in [8]. The corresponding open-loop transfer function is

L(z) = C(z)G(z) =
KIK(1− a)

(z − 1)zl
. (13)

A typical root locus of this system with respect to KI is shown in Figure 3. Since L(z) has no zero, all the l + 1 loci
approach asymptotically to l + 1 straight lines, which start at

z =
1

l + 1
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Figure 3: Typical root locus of the closed-loop system

with angles

θ =
2k + 1

l + 1
· 180◦, (k = 0, 1, 2, · · · , l).

The l + 1 loci can be categorized into two groups: one is the l − 1 loci starting at the origin and then approaching ∞; the
other is the two loci starting at z = 0 and z = 1, which meet together and then approach ∞ (if there is no zero z = a
in the controller, then the locus starting at the origin in the second group starts at z = a). Since the pole z = a of the
plant is canceled by the zero z = a in the controller, the two loci closest to the right-half real axis are pushed towards
the left-half plane. This means a larger gain margin or a faster disturbance response can be obtained. This is why such
a zero is placed in the controller (1). Theoretically speaking, if one more zero is placed between z = a and z = 1 then
a larger gain margin can be obtained, but this conflicts with the requirement of the shape of the control signal. As can
be seen from the root locus in Figure 3, there always exists a critical gain KIc such that only one real pole or a pair of
complex poles arrive(s) at the unity circle and the others remain inside the unity circle. For any gain 0 < KI < KIc, the
closed-loop system is always stable. Since the open-loop transfer function (13) is very similar to that obtained in [8], the
stability lemma obtained there still holds and is cited below.

Lemma 1 [8] The closed-loop system designed above is stable if

0 < KI <
2

K(1 − a)
sin

π

4l + 2
.

In order to obtain a phase margin of φm, the integral coefficient KI can be chosen as

KI =
2

K(1 − a)
sin

π − 2φm

4l + 2
.

In order to obtain a gain margin of gm, the integral coefficient KI can be chosen as

KI =
2

K(1 − a)gm
sin

π

4l + 2
.

Proof See [8].
When n = 0, we have

N(z) = 1,

which offers
Tyr = z−(l+1)

and

Tur =
1 − az−1

K(1 − a)
.
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Figure 4: An alternative implementation

These responses are the same as the one obtained in [8]. According to (9) or (8), the maximal control signal should not
be less than 1

K(1−a) . Otherwise, the approach proposed in [8] makes the controller saturated and hence cannot be used.

2.3 An alternative implementation

The control system designed above can be implemented in an alternative structure shown in Figure 4, where the controller
C(z) is given in (12) and the filter Fu(z) is

Fu(z) =
1 − an+1z−n−1

K(1 − an+1)
.

Gm(z) is the model of the nominal plant, i.e.

Gm(z) = K
1 − a

1 − az−1
z−(l+1).

The desired set-point response is
ym(z) = Gm(z)Fu(z)r(z)

and, for r(z) = 1, it is
ym(z) = N(z)z−(l+1).

This control structure, which was also discussed in [9], can be regarded as an open-loop controller Fu(z) combined with a
closed-loop controller C(z). Fu(z) is used to supply a desired control profile uo while the desired set-point response ym

is supplied through an ideal model of the plant Gm(z). C(z) is designed to govern the disturbance response, the stability
and the robustness.

There are some advantages to use this structure. It is clearer that the desired control signal can be designed in an
open-loop way if the plant is stable. Another advantage of this implementation is that the controller design does not affect
the shaping of the control signal, unlike the case discussed before (where N(z) is a part of the controller). Hence, a
different controller, e.g. a PID controller, can be easily designed. Using this structure, it is also possible to generalize the
proposed idea to general high-order plants.

3 Examples

Three examples will be studied in this section. The first example is an FOPDT having a long dead time; the second one
is an FOPDT having a short dead time; the third one is a multi-lag process which can be modeled as an FOPDT model.
In the first example, the attention will be paid to the control signal and the set-point response. In the second example,
the attention will be paid to the comparison of the disturbance response with respect to well-tuned PI controllers for both
nominal and uncertain cases. In the last example, the attention will be paid to the effectiveness of the proposed method
for multi-lag processes.
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Figure 5: The distribution of the closed-loop poles

3.1 A process with long dead time

Consider the following FOPDT model having a long dead time:

G(s) =
e−5s

s + 1
,

which was studied in [8]. Here, we choose the sampling period as Ts = 0.25 s. The parameters of the generalized plant
are a = 0.7788 and l = 20. Assume that the upper bound of the controller output is umax = 1.45, then

n ≥ 3.68

We choose
n = 4

and hence
N(z) = 0.31 + 0.2414z−1 + 0.1881z−2 + 0.1464z−3 + 0.1141z−4.

The parameter KI is chosen as KI = 0.173 to obtain a phase margin of 45◦. The corresponding distribution of the
closed-loop poles is shown in Figure 5. All the 21 poles are inside the unity circle. The converted set point r ′ for r = 1
is shown in Figure 6. The set point has been changed into four pieces: the first piece is a staircase signal larger than the
original value due to the effect of D(z) in F (z); the second piece is 0 (this piece disappears if m > l); the third piece is
another staircase signal due to the effect of N(z) in F (z); the last piece is the original set point. It is worth noting that the
large magnitude in the first piece, which is nothing else but just a value in the controller, does not cause the control signal
saturated, see Figure 7. The control signal has two levels and stays below the upper bound. The system output reaches the
steady state after n + 1 = 5 sampling steps, in addition to the inherent dead time of the plant, as shown in Figure 7. The
error signal is shown in Figure 8. It is very clean. It remains 0 after m steps, even when the system output is increasing
from 0 to the steady state. The disturbance responses with respect to d = −0.2 · 1(t − 15) for KI = 0.173 as well as for
KI = 0.115, corresponding to a phase margin of 60◦, are shown in Figure 9. Bearing in mind, the change of KI does
not affect the set-point response and the corresponding control signal, although it does affect the converted set point and
the control signal corresponding to the disturbance. Hence, the disturbance response can be freely tuned according to the
requirement of the phase or gain margin.

3.2 A process with short dead time

Consider the following FOPDT model having a short dead time:

G(s) =
e−0.5s

s + 1
,
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Figure 6: The converted set point

Figure 7: The output and the control signal

which was studied in [8, 11]. Here, we choose the sampling period as Ts = 0.25 s. The parameters of the generalized
plant are a = e−0.25 and l = 2. Assume that the upper bound of the controller output is umax = 1.45, then

n ≥ 3.68.

We choose
n = 4

and as a result,
N(z) = 0.31 + 0.2414z−1 + 0.1881z−2 + 0.1464z−3 + 0.1141z−4.

As mentioned before, N(z) does not depend on the dead time of the plant. The N(z) obtained here is the same as the one
obtained in the previous example.

KI is chosen as 1.101 to obtain a phase margin of 55◦. The set point response and the corresponding control signal
are shown in Figure 10. The control signal changes from the larger value to the smaller value at the m = n+1 = 5th step
and the system output reaches the steady state at the l + n + 1 = 7th step. There is no oscillation in the control signal, no
overshoot in the system output.

In the sequel, the simulation results are compared with two discrete-version PI controllers, of which the continuous
ones Kp(1 + 1

Tis
) are tuned by Zigler-Nichols method (noted as Z-N in figures) and Ho-Hang-Cao method [11] (noted as

H-H-C in figures). The parameters tuned by Z-N method are Kp = 1.8 and Ti = 1.5 s and the parameters tuned by Ho-
Hang-Cao method are Kp = 1.05 and Ti = 1.0 s to obtain a gain margin of 3dB and a phase margin of 60◦. All controller
outputs in the simulations are bounded by umax = 1.45. A step disturbance d = −0.2 acts at t = 7s. The control signals,
the system outputs and the error signals in the nominal case are shown in Figure 11. The responding speeds with respect
to the set-point changes are very close to each other, however, the response obtained by the proposed controller has no
overshoot while the other two have about 20% overshoot. The settling time obtained by the proposed controller is much
shorter than the other two. The excellent set-point response does not cause the degradation of the disturbance response.
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Figure 8: The error signal

Figure 9: Disturbance responses

In fact, the disturbance response is still the best one (slightly better than that obtained by H-H-C). As to the control signal,
there are only two levels in the control signal (in the part responding to the set-point change) of the proposed controller,
but there are many levels in the other two. The proposed controller is not saturated but both the other two are saturated.
A prominent property can be seen from the error signal shown in Figure 11 (c): the error signal e (see Figure 1) remains
0 after the effect of D(z), i.e. after m steps, until there is a load disturbance. In other words, the proposed controller does
not have error accumulation if there is no disturbance (and, of course, no uncertainty as well) but the other two controllers
do have error accumulation. When there exists uncertainty in the plant, the proposed controller still behaves much better
than the other two, as can be seen from Figure 12, where the responses in three cases having different uncertainties are
shown.

3.3 A multi-lag process

Consider the following multi-lag process

G(s) =
1

(s + 1)5
,

which was studied in [11]. Here, we design the controller using the following model:

G(s) =
e−3s

2.73s + 1
, (14)

which is slightly different in that given in [11]. The sampling period is chosen as Ts = 0.3 s and the parameters of the
generalized plant are a = 0.8959 and l = 10. Assume that the upper bound of the controller output is umax = 1.45, then

n ≥ 9.65.

9



Figure 10: Set-point response and the control signal

We choose
n = 10

and as a result,

N(z) = 0.1484 + 0.1329z−1 + 0.1191z−2 + 0.1067z−3

+0.0956z−4 + 0.0856z−5 + 0.0767z−6 + 0.0687z−7

+0.0616z−8 + 0.0552z−9 + 0.0495z−10.

The integral gain KI is tuned as KI = 0.4791 to obtain a phase margin of 60◦. The simulation results are shown in
Figure 13 with comparison to those (noted by H-H-C in the figures) obtained by the PI controller 0.49(1 + 1

2.74s ) tuned
in [11] (to obtain a phase margin of 60◦ and a gain margin of 3dB). Since the proposed controller is designed according
to the approximate model (14), the set-point response is no longer deadbeat. However, it is still much faster than the one
obtained by the PI controller while the disturbance response is slightly better. The overshoot is also smaller. The control
signals are quite different at the beginning: the proposed control signal outputs the maximal value from the beginning, but
the PI controller has to integrate the error signal to reach the maximal value.

4 Conclusions

A new idea, shaping the control signal, has been proposed in this paper to offer a two-level control for processes with dead
time and input constraints. The control signal (responding to the set-point change) consists of two levels: a large-value
level and then a small-value level. The system output reaches the steady state in finite time, which is determined by the
maximal control output and the plant parameters and is independent of the control parameters, even the sampling period.
Hence, the sampling period can be freely chosen to obtain a satisfactory disturbance response. The disturbance response
is governed by a PI controller, which can be tuned to guarantee a specified gain or phase margin. The proposed idea can
be generalized to more general plants using other controllers, e.g. a PID controller. Three examples have shown that the
two-level control indeed offers good set-point and disturbance responses. Further research on deadbeat control with input
constraints for general plants will be undertaken.
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(a) the system outputs

(b) the control signals

(c) the error signals

Figure 11: Response in the nominal case
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(a) Case 1: K increased by 20%

(b) Case 2: T increased by 20%

(c) Case 3: τ increased by 20%

Figure 12: Responses in three uncertain cases
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(a) the system outputs

(b) the control signals

Figure 13: Responses of the multi-lag process
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