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Abstract

This note proposes two approaches to approximate the distributed delay in control laws and, fur-
thermore, to implement it in thez-domain and in thes-domain. TheH∞-norm of the approximation
error converges to0 when the numberN of approximation steps approaches+∞. Hence, the instability
problem due to the approximation error (which has been widely studied in recent years) does not exist,
provided thatN is large enough. Moreover, the static gain is guaranteed so that no extra efforts are
needed to retain the steady-state performance. As by-products, two new formulae for the forward and
backward rectangular rules are obtained. These formulae are more accurate than the conventional ones
when the integrand has an exponential term.

Index Terms: distributed delay, finite-spectrum assignment, dead-time compensator, quadrature
approximation, numerical integration, implementation error

1 Introduction

Distributed delays (i.e., finite integrals over the time, also called finite-impulse-response FIR blocks) often
appear as a part of dead-time compensators for processes with dead time, in particular, for unstable pro-
cesses with dead time [1, 2, 3, 4]. They also appear inH∞ control of (even, stable) dead-time systems
[5, 6, 7, 8, 9] and continuous-time deadbeat control [10]. Due to the requirement of internal stability, such
an FIR block has to be, approximately, implemented as a stable block without hidden unstable poles.

A common way to do so is to replace the distributed delay by thesum of a series of discrete (often
commensurate) delays [1, 2, 3] (other interesting implementations using resetting mechanism can be found
in [11] and [12]). However, it has emerged very recently thatthis approximation method (more specifically,
using quadrature rules such as rectangular, trapezoidal and Simpson’s rules etc.) cannot guarantee the
system stability, even when quite accurate approximation integral laws were used [13]. This topic has
drawn a lot of attention from the delay community and has become a very hot topic in recent years; see
[12, 13, 14, 15, 16, 17, 18, 19, 20]. It has been proposed as an open problem in the survey paper [21]. The
analysis of the causes of such behaviors was studied in [17, 14, 13] using a simple example. It was shown
in [17] that the resulting system becomes a neutral time-delay system and the closed-loop poles having
large magnitude located in the right-half plane (whatever the precision of the trapezoidal approximation is)
caused the instability.

It has been well understood that the existence of a low-pass filter in the approximation may fix the in-
stability problem, as explicitly or implicitly reported in[19, 20, 18]. Indeed, this is a standard technique to
convert a neutral time-delay system into a retarded one; seee.g. [22]. However, it is not clear why the ap-
proximation, which only involves the classical quadraturerules and Laplace transform, has lost the inherent
low-pass property, nor is it clear how to easily choose a suitable low-pass filter (see [18, Subsection 4.2]).
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This note intends to answer these questions and proposes some improved approximations to implement the
distributed delay. In this note, anapproximation is called animplementation only when it is implementable.

In the literature, this problem is often considered in the context of a control system. It often involves
the change of the control structure, e.g., due to an algebraic loop, inserting a low-pass filter or even the
redesign of a control law. Here, this problem is regarded as apure approximation/implementation problem
in the frequency domain. Two different reasonings will be applied, but the obtained results are the same.
The proposed implementations guarantee both the low frequency behavior and the high frequency behav-
ior. Moreover, theH∞-norm of the approximation error converges to0 when the approximation stepN
approaches+∞. Hence, there is no change of control structure; there is no instability provided thatN is
large enough. Indeed, a widely studied system, which demonstrated instability, is stable even whenN = 1.

The rest of this note is organized as follows. Some preliminaries are given in Section 2. Two different
approaches are proposed to approximate the distributed delay in Section 3 and implementations in thez-
domain and in thes-domain are proposed in Section 4. The stability issue is discussed in Section 5 and
numerical examples are given in Section 6.

2 Preliminaries

It has been well known [1, 23] that, for a given dead-time processP (s)e−sh with P (s) = C(sI − A)−1B,
the finite-spectrum-assignment control law is given by

u(t) = Fxp(t), xp(t) = eAhx(t) +
∫ h

0
eAζBu(t − ζ)dζ, (1)

whereF is the state feedback gain andxp(t) is the predicted state of the process. This control law stabilizes
the system to a finite spectrum ifA + BF is stable. Denote the distributed delay in (1) to be

v(t) =
∫ h

0
eAζBu(t − ζ)dζ, (2)

then thes-domain equivalent (i.e., the transfer function fromu to v) is:

Z(s) = (I − e−(sI−A)h)(sI − A)−1B. (3)

Hence, in the frequency domain, thedistributed delayZ is actually a system including adiscrete delay but
with a special property that all poles are canceled by its zeros, i.e., an entire function. This paves the way
that the techniques mentioned in [24] can be applied to approximateZ with a rational function, with special
attention paid to avoiding the unstable poles.

The integral (distributed delay)v(t) from (2) can be approximated in the time domain by using various
quadrature rules such as rectangular, trapezoidal and Simpson’s rules etc. In this note, the analysis is based
on the rectangular rule for simplicity. It can be easily extended to other rules. The approximatedv(t) using
the backward rectangular rule is

vw(t) =
h

N

N
∑

i=1

eiA h

N Bu(t − i
h

N
), (4)

whereN is the number of approximation steps. The Laplace transformation ofvw(t), as done in the litera-
ture, gives the following approximation ofZ(s) (i.e., the transfer function fromu to vw):

Zw(s) =
h

N
·

N
∑

i=1

e−i h

N
(sI−A)B. (5)

As is known,Zw is not a good implementation ofZ [13, 14, 18]. A simple reason to question this is that the
original FIR blockZ is strictly proper butZw is not. The bad approximation at high frequencies makes the
stability analysisunnecessarily complicated and, what is worse, makes no guarantee of the system stability
[14, 15, 13, 17, 19].
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Figure 1: Illustration of Proposition 1

3 Approximation of distributed delay

3.1 The integration
∫

h
N

0 y(t − τ)dτ

Proposition 1. For any integrable function y(t) and the step function 1(t), the following identity holds:

∫ h

N

0
y(t − τ)dτ =

∫ t

t− h

N

y(τ)dτ = y(t) ∗ p(t),

where ∗ stands for the convolution and p(t) = 1(t) − 1(t − h
N

) is a rectangular pulse function.

Proof. The first “=” is obvious. The second “=” can be proved using the definition of the convolution. An
illustration of this formula is shown in Figure 1.

This formula seems trivial, but it reveals the secret behindthe instability phenomenon. Obviously, the

Laplace transformation of
∫

h

N

0 y(t − τ)dτ is Y (s) · 1−e
−s

h

N

s
, whereY (s) is the Laplace transformation of

y(t) and 1−e−s
h

N

s
is that ofp(t). However, when a quadrature rule is applied to approximate

∫

h

N

0 y(t− τ)dτ ,
then the corresponding Laplace transformation isY (s) multiplied by a polynomial of delays. For example,
when the forward rectangular rule is used, i.e.,

∫ h

N

0
y(t− τ)dτ ≈ y(t) ·

h

N
,

this polynomial is h
N

; when the backward rectangular rule is used, this polynomial is h
N

e−
h

N
s; when the

trapezoidal rule is used, this polynomial ish
N

1+e
−

h

N
s

2
. Hence, in the frequency domain, the quadrature

approximation can be interpreted as approximating1−e
−s

h

N

s
with a polynomial of delaye−

h

N
s. This ap-

proximation loses the strict properness of1−e−s
h

N

s
. An approximation, which does not lose this important

property, will be given in Subsection 4.2.

3.2 Approximation in the s-domain via the Laplace transform

Divide the interval[0, h] into N sub-intervals[i h
N

, (i + 1) h
N

], i = 0, 1, . . . , N − 1, thenv(t) in (2) can be
re-written as

v(t) =
N−1
∑

i=0

∫ (i+1) h

N

i h

N

eAζBu(t − ζ)dζ. (6)
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WhenN is chosen to be large enough,eAζ in the interval[i h
N

, (i+1) h
N

] can be well approximated byeiA h

N .
This offers the following approximation forv(t):

v(t) ≈ vf (t) =
N−1
∑

i=0

eiA h

N B
∫ (i+1) h

N

i h

N

u(t − ζ)dζ

=
N−1
∑

i=0

eiA h

N B
∫ h

N

0
u(t − i

h

N
− τi)dτi, (7)

where the variable changesζ = τi + i h
N

are used and the subscript “f ” stands for forward. This approxi-
mation can also be obtained by applying the technique used in[20], which involves block-pulse functions.
The reasoning used here is simpler and needs less mathematical background. Applying Lemma 1, the last
formula becomes

vf(t) =
N−1
∑

i=0

eiA h

N Bu(t − i
h

N
) ∗ p(t). (8)

On the other hand, if it is assumed that

u(t− i
h

N
− τi) = u(t − i

h

N
) for 0 ≤ τi <

h

N
, (9)

thenvf given in (7) can befurther approximated as

vf(t) ≈ vwf(t) =
h

N

N−1
∑

i=0

eiA h

N Bu(t − i
h

N
). (10)

This is exactly the approximation ofv by using the forward rectangular rule. As will be shown later, the
approximationvf does not cause instability whenN is large enough. However, as is known, the approxi-
mationvwf does. The significant difference betweenvf andvwf is the convolution withp(t). An alternative
interpretation is that the condition (9) is not explicitly shown in (10).

The transfer function fromu to vf , according to (8), gives the following approximation ofZ(s):

Zf(s) =
1 − e−s h

N

s
·

N−1
∑

i=0

e−i h

N
(sI−A)B. (11)

Similarly, the transfer function fromu to vwf is

Zwf(s) =
h

N

N−1
∑

i=0

e−i h

N
(sI−A)B. (12)

Theorem 2. The approximation Zf holds the following properties: (i) limN→+∞ Zf(s) = Z(s); (ii) Zf is
strictly proper, i.e., lim|s|→+∞,ℜ(s)≥0 Zf(s) = 0.

Proof. limN→+∞ Zf (s) = limN→+∞
1−e

−s
h

N

s ·
∑N−1

i=0 e−i h

N
(sI−A)B

= lim
N→+∞

1 − e−s h

N

s
(I − e−(sI−A)h)(I − e−

h

N
(sI−A))−1B

= (I − e−(sI−A)h) lim
N→+∞

1 − e−s h

N

s
(I − e−

h

N
(sI−A))−1B

= (I − e−(sI−A)h) lim
τ→0+

1 − e−sτ

s
(I − e−τ(sI−A))−1B

= (I − e−(sI−A)h) lim
τ→0+

e−sτ · ((sI − A)e−τ(sI−A))−1B

= (I − e−(sI−A)h)(sI − A)−1B = Z(s),

where the substitutionτ = h/N is used. The second property is obvious. This completes the proof.
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Remark 1. Actually, limN→+∞ Zwf(s) = Z(s) as well. However,Zwf is not strictly proper. This makes the
stability analysis of the system, as done in the literature,very complicated. Furthermore, as will be proved
later,Zf converges toZ uniformly.

Although the approximation (11) guarantees the high-frequency behavior of the distributed delayZ, the
approximation error at low frequencies might be large. In particular, the non-zero error at the zero frequency
is not desirable. It changes the system performance at the steady state, as can be seen from the simulations
in [13], and hence extra efforts to guarantee the steady-state performance are needed [2]. This means certain
change of control law, e.g., as used in [18, Example 2], is needed. Such efforts can be eliminated by using
a different approximation as follows.

Instead of approximatingeAζ with eiA h

N as in (7), it can be approximated with the mean value ofeAζ in
the interval. This offers the following approximation1:

v(t) ≈ vf0(t) =
N−1
∑

i=0

N

h

∫ (i+1) h

N

i h

N

eAζdζ · B ·
∫ (i+1) h

N

i h

N

u(t − ζ)dζ

= (e
h

N
A − I)(

h

N
A)−1 · vf(t).

The corresponding approximation ofZ in thes-domain is given by

Zf0(s) =
1 − e−

h

N
s

s

e
h

N
A − I
h
N

A−1 ·
N−1
∑

i=0

e−i h

N
(sI−A)B. (13)

Theorem 3. Zf0 holds the following properties: (i) limN→+∞ Zf0(s) = Z(s); (ii) Zf0 is strictly proper;
(iii) lims→0 Zf0(s) = lims→0 Z(s).

Proof. Property (i) is obvious sincelimN→+∞
N
h
(e

h

N
A − I)A−1 = I and property (ii) is also obvious.

The static gain ofZf0 is the same as that ofZ because

lim
s→0

Zf0(s) = lim
s→0

1 − e−s h

N

s

e
h

N
A − I
h
N

A−1
N−1
∑

i=0

e−i h

N
(sI−A)B

= (e
h

N
A − I)A−1

N−1
∑

i=0

ei h

N
AB

= −(I − eAh)A−1B = lim
s→0

Z(s).

Zf0 guarantees a small approximation error at both low and high frequencies, in particular, zero error
at the frequencies0 and +∞. Hence,Zf0 is more accurate thanZf , in particular, at low frequencies.
This indicates that a similar change in the rectangular rulemay provide a better accuracy for numerical
integration. This better approximation formula is

∫ h

0
eAζBu(t − ζ)dζ ≈ (e

h

N
A − I)A−1 ·

N−1
∑

i=0

eiA h

N Bu(t− i
h

N
). (14)

To the best knowledge of the author, this result is new. WhenA = 0, (e
h

N
A − I)A−1 becomesh

N
and hence

this new formula can be regarded as an extension of the conventional forward rectangular rule. It provides a
better approximation than the conventional forward rectangular rule when the integrand has an exponential
term.

1If A is singular, then an appropriate limitation should be used to calculate some elements ofN
h

(e
h

N
A−I)A−1 when necessary.

It can also be replaced by the integralN
h

∫ h

N

0 eAζdζ. Similar situations are for(I − eAh)A−1 and N
h

(I − e−
h

N
A)A−1.
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3.3 Direct approximation in the s-domain

In thes-domain, the distributed delayZ from (3) can be easily2 re-written as

Z(s) = (I − e−(sI−A) h

N )(sI − A)−1 ·
N−1
∑

i=0

e−i h

N
(sI−A)B. (15)

Hence, the distributed delayZ has been converted to the sum of a series of discrete delays, although there
still exist hidden unstable poles in the first part, i.e.,

H(A) = (I − e−(sI−A) h

N )(sI − A)−1.

It is relatively easy to implementH(A) because it involves a much shorter delayh/N whenN is large.
The aboveH(A) is a function of matrixA. It can be expanded as the following power series ofA:

H(A) =
1 − e−

h

N
s

s
I +

1 − e−
h

N
s − h

N
se−

h

N
s

s2
· A +

1

2!

2(1 − e−
h

N
s) − h

N
s(2 + h

N
s)e−

h

N
s

s3
· A2 + · · · .

This series (uniformly) converges for any square matrixA, provided thatH(sI) is defined to beh
N

I [25].

The approximation by the first termH(A) ≈ 1−e
−

h

N
s

s
I provides the approximationZf(s) given in (11).

Note that the hold filter1−e
−

h

N
s

s
appears again, although the reasoning used here is different from that used

in the previous subsection. As a matter of fact,Z can be regarded as a generalized holder with a period of
h (because the impulse response ofZ is non-zero only in[0, h]).

Furthermore, the coefficients in the series ofH(A) can be separated into the sum of a term not involving
s and a term including a factor ofs, i.e.,

H(A) =
1 − e−

h

N
s

s
·

(

I +
1

2!

h

N
A +

1

3!
(
h

N
A)2 + · · ·

+(
1 − s

1−e
−

h

N
s

h
N

e−
h

N
s

s
−

1

2!

h

N
) · A + (

1

2!

2 −
s(2+ h

N
s)

1−e
−

h

N
s

h
N

e−
h

N
s

s2
−

1

3!
(
h

N
)2) · A2 + · · ·

)

=
1 − e−

h

N
s

s
·

(

(e
h

N
A − I)(

h

N
A)−1 + Ĥ(A)

)

,

whereĤ(A) represents the rest of the series in the bracket above. It is easy to show that̂H(A) = 0 when

s → 0 or A = 0. The approximation by the first termH(A) ≈ 1−e−
h

N
s

s
· (e

h

N
A − I)( h

N
A)−1 provides the

approximationZf0 given in (13).

3.4 Equivalents for the backward rectangular rule

The approximationsZf andZf0 have an index range ofi = 0, · · · , N − 1 and hence may be regarded as
corresponding to theforward rectangular rule. Similar approximationsZb andZb0, which have an index
range ofi = 1, · · · , N and correspond to thebackward rectangular rule, are

Zb(s) =
1 − e−s h

N

s
·

N
∑

i=1

e−i h

N
(sI−A)B, (16)

2SinceZ(s) =
∫ h

0 e−(sI−A)θdθ ·B, (14) provides the true value forZ. Another way is to use the formula(1−a)
∑N−1

i=0 ai =
(1 − aN).
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Figure 2: Implementations ofZ in thez-domain

Zb0(s) =
1 − e−s h

N

s
·
I − e−

h

N
A

h
N

A−1
N
∑

i=1

e−i h

N
(sI−A)B. (17)

As similar to (14), the last formula corresponds to the following quadrature approximation formula:

∫ h

0
eAζBu(t − ζ)dζ ≈ (I − e−

h

N
A)A−1 ·

N
∑

i=1

eiA h

N Bu(t − i
h

N
). (18)

WhenA = 0, (I − e−
h

N
A)A−1 becomesh

N
and hence this new formula can be regarded as an extension

of the conventional backward rectangular rule. It providesa better approximation than the conventional
backward rectangular rule when the integrand has an exponential term.

Zb andZb0 hold the properties in Theorems 2 and 3, respectively. It is easy to see that there exists
a pure one-step delaye−

h

N
s in Zb andZb0 (becausei starts from1 to N). It turns out that dropping this

term improves the approximation. As a matter of fact, when the pure delay terme−
h

N
s in Zb0 is dropped,

Zb0 becomes the same asZf0 (see the simulations in Section 6 for accuracy comparison).Hence, the
implementation ofZ in the next section and the stability issue in Section 5 will be done forZf andZf0

only, although some simulations will be given in Section 6 for comparison. The backward rectangular rule
is not recommended for implementation of distributed delay.

4 Implementation of distributed delay

4.1 Implementation in the z-domain

The approximationsZf andZf0, given in (11) and (13), incorporate a hold filter1−e
−

h

N
s

s
. It is nothing

else but a zero-order holder (ZOH), which is an element normally existing in a sampled-data system, and
the rest is approximately a polynomial ofz−1, by usingz ≈ es h

N . Hence, these transfer functions can
be approximately implemented in thez-domain with a sampling period ofh

N
, as shown3 in Figure 2. As

pointed out by Kannai and Weiss in [26, Proposition 4.1], theimplementations shown in Figure 2 converge
to the corresponding transfer functions whenN → +∞. Hence, this approximation step does not change
the system stability, provided thatN is large enough.

The implementation ofZf (when ignoring the S and ZOH blocks) looks very similar toZwf from (12),
but there is a significant difference:Zwf in (12) is in thes-domain but the implementation in Figure 2 is
in the z-domain. WhenZ is implemented in thez-domain, the resulting system is a hybrid system and
the stability cannot be analyzed by simply replacing the delay termz−1 with e−

h

N
s. What has been done

here is actually the digital implementation of a continuoustime control law. Another way is to re-design a
controller for the sampled plant, as reported in [16].

3Actually, only the implementationZf0 is needed becauseZf does not guarantee the static gain. It is given here for compar-
ison withZwf in (12).
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4.2 Implementation in the s-domain

Zf0 does not include any hidden unstable poles of the plant, i.e., the eigenvalues ofA. However, ifZf0 is to
be implemented in thes-domain, extra care has to be taken for the implementation ofthe hold filter because
it includes a hidden unstable pole ats = 0. This is more or less the same as the original problem but it is
much easier to remove the hidden unstable poles = 0 because the involved delayh

N
can be made much

shorter than the original delayh (which implies the approximation to be made in a much shorterperiod, in
the sense of the impulse response) and the poles = 0 is known.

The hold filter can be expanded as the following series ofǫ:

1 − e−
h

N
s

s
=

1 − e−
h

N
(s+ǫ)

s + ǫ
+

1 − e−
h

N
(s+ǫ) − h

N
(s + ǫ)e−

h

N
(s+ǫ)

(s + ǫ)2
ǫ + · · · ,

and hence it can be approximated by the first term as1−e
−

h

N
s

s
≈ 1−e

−

h

N
(s+ǫ)

s+ǫ
. Here,ǫ > 0 is a small number

close to0 and hence 1
s+ǫ

is stable and implementable. Similarly as before, this approximation does not
guarantee the static gain, but the following one does:

1 − e−
h

N
s

s
≈

1 − e−
h

N
(s+ǫ)

s + ǫ

h
N

ǫ

1 − e−ǫh/N
. (19)

Using this implementation of the hold filter,Z can now beimplemented in thes-domain, corresponding to
Zf0, as

Zfǫ(s) =
1 − e−

h

N
(s+ǫ)

1 − e−
h

N
ǫ

e
h

N
A − I

s/ǫ + 1
A−1 · ΣN−1

i=0 e−i h

N
(sI−A)B. (20)

Theorem 4. The implementation Zfǫ holds the following properties: (i) limN→+∞ Zfǫ(s) = Z(s); (ii) Zfǫ

is strictly proper; (iii) lims→0 Zfǫ(s) = lims→0 Z(s).

Proof. limN→+∞
1−e

−

h

N
(s+ǫ)

1−e
−

h

N
ǫ

1
s/ǫ+1

= limτ→0+
1−e−τ(s+ǫ)

1−e−τǫ

1
s/ǫ+1

= lim
τ→0+

(s + ǫ)e−τ(s+ǫ)

ǫe−τǫ · (s/ǫ + 1)
= 1,

where the substitutionτ = h/N is used. Hence,limN→+∞ Zfǫ(s) = limN→+∞ Zwf(s) = Z(s). The second
property is obvious and the last one is easy to prove. This completes the proof.

Remark 2. Here,ǫ is a small positive number. It can be chosen as close to0 as possible whenever it is
implementable. However, there is no simple guideline to choose the low-pass filter for the strictly proper
implementation proposed in [18]; see the last paragraph of [18, Subsection 4.2]. As to the implementation
by adding a low-pass filter proposed in [19], no further suggestions were given for how to choose the
low-pass filter.

Remark 3. The low-pass filter in the implementations proposed in [18, 19] is added artificially to remedy
the instability. The low-pass filter in (20) is inherently there.

5 The stability issue related to the implementation

Denote the approximation error ofZf as
Ef = Zf − Z,

and similarly for the other approximation errors. As explained earlier, the approximation errors of the
approximationsZf andZf0 and the implementationZfǫ can be made as small as desirable by choosing
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a large enough numberN . Crucially, they are allstrictly proper. This makes the well-known small-gain
theorem (see e.g. [27, 28]) applicable for the stability analysis. Otherwise, a more complicated notion,
w-stability [29, 30], is needed. Indeed, the following theorem holds.

Theorem 5. The following formulae hold:

lim
N→+∞

‖Ef(s)‖∞ = 0,

lim
N→+∞

‖Efǫ(s)‖∞ = 0, (ǫ ≥ 0).

Proof. According to (11) and (15),Ef is equal to

Ef (s) =





1 − e−s h

N

s
I − (I − e−(sI−A) h

N )(sI − A)−1



 ·
N−1
∑

i=0

e−i h

N
(sI−A)B

= E1(s)Zwf(s),

whereZwf is as given in (12) and

E1(s) =
N

h





1 − e−s h

N

s
I − (I − e−(sI−A) h

N )(sI − A)−1





=
N

h

∫ h

N

0
e−sτ (I − eAτ )dτ. (21)

Since‖Zwf‖∞ is bounded on the closed right half-plane, it is sufficient toshow that‖E1‖∞ approaches0
whenN → +∞.

E1(s) is stable and hence it is only needed to consider the convergence on thejω-axis. It is easy to see
from (21) that

‖E1(s)‖∞ ≤
N

h

∫ h

N

0

∥

∥

∥I − eAτ
∥

∥

∥ dτ.

The right side approaches0 whenN → +∞, according to the L’Hospital’s rule. The second one can be
proved similarly.

Remark 4. However, neitherZw norZwf holds this property.

Remark 5. It is claimed in [18] that it can be shown the strictly proper implementation proposed there
holds this property. However, no proof was given there. There is no proof given in [19] to show that the
implementation by adding a low-pass filter hold this property, either.

According to the small-gain theorem, the approximation/implementation error does not cause any in-
stability whenN is large enough and there isno need of any further complicated analysis for the system
stability. Such a need lies in looking for the minimalN to guarantee the system stability. This is a topic left
for future research.

6 Numerical examples

Consider the simple plantẋ(t) = x(t) + u(t − 1) with the control law

u(t) = −(1 + λd)
(

e1 · x(t) +
∫ 1

0
eζu(t − ζ)dζ

)

+ r(t). (22)
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(a)Z is implemented asZb in thez-domain (b) Z is implemented asZw given in (5)

Figure 4: The unit step response (N = 8)

This example has been widely studied in the literature; see e.g. [17, 13, 14, 20]. Here,A = 1, B = 1, h = 1
andF = −(1 + λd). The closed-loop system has only one pole ats = −λd. The closed-loop system is
stable whenλd > 0. The distributed delay in (22) is

v(t) =
∫ 1

0
eζu(t− ζ)dζ. (23)

The ideal implementationZ in thes-domain isZ(s) = 1−e1−s

s−1
. The implementationZw studied in the

literature, as given by (5), is not strictly proper and hencethe approximation error, as shown in Figure 3(b)
as a dotted line, has a very large magnitude (it does not vanish even whenN → +∞) when the frequency
approaches+∞. The proposed approximations are strictly proper.Zb0 andZf0 guarantee the static gain of
Z (i.e., the error is0 at the zero frequency), as can be seen from the frequency responses ofEb0 andEf0

shown in Figures 3(a) and 3(b) for differentN . The larger the value ofN , the smaller the approximation
error. This verifies that there always exists a numberN such that the stability of the closed-loop system
is guaranteed. Moreover, for a certain approximation errorbound, the numberN required byZf0 is much
smaller than that required byZb0. Zf0 also converges faster thanZb0.

In order to keep connection with the results shown in the literature, Figure 4(a) shows the response
whenZ is implemented in thez-domain asZb for N = 8 and Figure 4(b) shows the response whenZ is
implemented asZw. The system is stable whenZ is implemented asZb but is unstable (as reported) when
Z is implemented asZw. The steady-state behavior of the system has been changed.

Figure 5 shows the implementation error ofZfǫ whenN = 1 for ǫ = 1, 0.5, 0.1 and0. The smaller the
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ǫ, the better the implementation. Whenǫ = 0.1, the implementation error is very close to that whenǫ = 0
and there is no need to use anǫ < 0.1. WhenZ is implemented in thes-domain as thisZfǫ, i.e.,

Zfǫ(s) =
e1 − 1

1 − e−ǫ

1 − e−ǫe−s

s/ǫ + 1
,

Figure 6 shows the unit-step response of the system using thecontrol law (22) withλd = 1, i.e.,

u = −(1 + λd)
(

e1 · x + v
)

+ r, v = Zfǫ · u

in the s-domain for differentǫ (note that no change is made to the control law). No instability occurred
in the simulations. The steady-state behavior of the systemis guaranteed; the transient response is slightly
worse than the ideal response, which is due to the approximation of the distributed delay. For differentǫ,
the smaller theǫ (the better the approximation), the smaller the overshoot.As expected from Figure 5, there
is no significant improvement whenǫ is less than0.1.

In summary, the recommendeds-domain implementation ofZ is theZfǫ given in (20) and thez-domain
implementation is theZf0 shown in Figure 2(b).

7 Conclusions

This note proposes two approaches to approximate distributed delay in control laws and then to implement
it in the z-domain and in thes-domain. It is shown that, in the frequency domain, the strict properness
of the distributed delay is lost when quadrature approximations are applied. This caused the instability
phenomenon reported in the literature. The objective of theproposed approximation is to guarantee the
low frequency and the high frequency behaviors of the distributed delay. Moreover, theH∞-norm of the
approximation error converges to0 when the number of approximation steps approaches+∞. Hence, the
reported instability due to the approximation error disappears, provided that the numberN of approximation
steps is large enough. The steady-state performance of the system is also guaranteed, without changing the
control structure. As by-products, two new formulae for theforward and backward rectangular rules are
obtained. These formulae are more accurate than the conventional ones when there is an exponential term
in the integrand. Numerical examples are given to verify theproposed results. As shown in simulations, a
widely studied system [17, 14, 13], which demonstrated instability, is stable even whenN = 1.
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