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Abstract

We point out a numerical problem in the well-known modified Smith predictor and pro-

pose a unified Smith predictor (USP) which overcomes this problem. The proposed USP

combines the classical Smith predictor with the modified one, after a spectral decomposi-

tion of the plant. We then derive an equivalent representation of the original delay system,

together with the USP. Based on this representation, we give a controller parameterization

and we solve the standard H 2 problem.

Index Terms: dead-time compensator, modified Smith predictor, finite-spectrum as-

signment, finite-impulse-response (FIR) block, Youla parameterization, H2 problem

1 Introduction

Time delays appear in many physical systems, in particular, those involving material transporta-

tion and/or information transmission. Often, systems with delays appear as a simple approxima-

tion of more complex infinite-dimensional systems. The classical Smith predictor (SP) (Smith,
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1957, 1958) is an effective tool to reduce control problems, such as pole assignment or track-

ing, for a finite-dimensional LTI stable system with an input or output delay, to corresponding

delay-free problems. A finite spectrum assignment scheme was developed in (Olbrot, 1978;

Manitius and Olbrot, 1979) to handle input delays in unstable plants by state feedback, using

the predicted state of the delay system. Watanabe and Ito (1981) overcame some shortcomings

in finite-spectrum assignment and other process-model-based control schemes available then,

by using a Smith-predictor-like block, which was afterwards called a modified (or generalized)

Smith predictor (MSP), see (Palmor, 1996) and the references therein. Recently, prediction has

been recognized as a fundamental concept for the stabilization of delay systems (Mirkin and

Raskin, 1999, 2003). Similar predictor blocks have played an important role in H∞ control of

time-delay systems (Meinsma and Zwart, 2000; Zhong, 2003b,c; Mirkin, 2003; Zhong, 2003e)

and in continuous-time deadbeat control (Zhong, 2003a; Nobuyama et al., 1996).

We show that the modified Smith predictor may run into numerical problems for delay sys-

tems with some fast stable eigenvalues. Indeed, the matrix exponential e−Ah (where h is the

delay) appearing in the MSP may be practically non-computable for such systems. Such a

numerical problem was mentioned in (Meinsma and Zwart, 2000, p. 279) and a technique,

which is not systematic, was suggested in (Zwart et al., 1998) to overcome the problem. This

problem was attributed in these papers to large delays. Actually, this numerical problem might

occur even for very small delays (with respect to the time constant of the system) if there are

some stable eigenvalues λ and they are very fast with respect to the delay h (i.e., the product

|Reλ|h is large). We propose an alternative predictor, called the unified Smith predictor (USP),

to overcome this problem. The USP combines the features of the SP and the MSP and it does

not require the computation of the matrix exponential for the stable eigenvalues. We achieve

this by decomposing the state space of the finite-dimensional part of the plant into unstable

and stable invariant subspaces. The controller design techniques based on the MSP have to be

re-considered for the USP, to make them applicable in practice. For this reason, we propose an

equivalent representation for the augmented plant, which consists of the original plant together

with the USP. This equivalent representation is then used to give a stabilizing controller param-

eterization and to solve the standard H 2 problem. Further research is needed to solve the H∞

control problem for a delay system with a USP.
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This paper is organized as follows: The numerical problem with the MSP is explained

in Section 2 using a very simple example, and then the USP is introduced. An equivalent

representation of the augmented plant is derived in Section 3. We show in Section 4 how this

equivalent representation can be used to derive a stabilizing controller parameterization and to

solve the H2 problem.

2 The unified Smith predictor

This paper is written from a frequency domain perspective, which means that LTI systems

are represented by their transfer functions. Here, by a transfer function we mean an analytic

function defined on a domain which contains a half-plane Cα = {s ∈ C | Res > α}. A transfer

function is called exponentially stable if it is bounded on a half-plane Cα with α < 0. Obviously,

exponentially stable transfer functions are contained in H∞. We will use notation (common in

the literature)

P =


 A B

C D


 , (1)

meaning that P (s) = C(sI − A)−1B + D, where A, B, C, D are matrices.

2.1 The numerical problem with the MSP

Consider a dead-time plant Ph, with Ph(s) = P (s)e−sh, where h > 0 and the rational part P

is realized as in (1). By a predictor for Ph we mean an exponentially stable system Z such

that Ph + Z is rational. A predictor-based controller for the dead-time plant Ph consists of

a predictor Z and a stabilizing compensator C, as shown in Figure 1 (see also Figure 5 for a

more general structure). The underlying idea is the well-known fact that there is a one-to-one

correspondence between the set of all the stabilizing controllers for Ph and for Ph + Z, see for

example Remark 3.6 and Example 4.1 in (Curtain et al., 1996).

In order to simplify the exposition, only the stabilization problem will be studied in this

section. If the tracking problem is considered, then an additional constraint on C is required,

e.g., if the reference r is a step signal then it is required that lims→0 C(s)(I+Z(s)C(s))−1 = ∞,

see (Watanabe and Ito, 1981; Palmor, 1996) for more details.
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If P is stable, then the predictor Z can be chosen to be the classical Smith predictor (SP)

(Smith, 1957, 1958),

ZSP(s) = P (s) − P (s)e−sh, (2)

and the stabilizing compensator C is designed as a stabilizing controller for the delay-free sys-

tem P . If P is unstable, then the predictor Z can be chosen to be the modified Smith predictor

(MSP) (Watanabe and Ito, 1981; Palmor, 1996),

ZMSP(s) = P aug(s) − P (s)e−sh, (3)

where P aug = Ph + ZMSP, the augmented plant, is given by

P aug =


 A B

Ce−Ah 0


 =


 A e−AhB

C 0


 . (4)

Note that ZMSP has its impulse response supported on [0, h], hence it is exponentially stable.

Now the stabilizing compensator C is designed as a stabilizing controller for P aug. For further

background and applications of the MSP we refer to (Meinsma and Zwart, 2000; Mirkin and

Raskin, 2003). Implementing ZMSP is a delicate problem, because we have to avoid hidden

unstable modes. One approach is to use some form of numerical integration using the past

values of u (Palmor, 1996; Manitius and Olbrot, 1979; Zhong, 2003d). Alternatively, ZMSP

can be approximately implemented by an FIR block with a stable rational part, so that it does not

have hidden unstable modes (Watanabe and Ito, 1981). Recently, an interesting implementation

of ZMSP using resetting integrators has been proposed in (Mondié et al., 2001).

Now consider a simple example with

P =




−1000 0 1

0 1 1

1 1 0


 ,

i.e., P (s) = 1
s+1000

+ 1
s−1

. According to (3), the predictor needed is

ZMSP(s) =
e1000h − e−sh

s + 1000
+

e−h − e−sh

s − 1
.

Clearly, there is a numerical problem: e1000h is a huge number even for a not so large delay

h! Indeed, according to IEEE Standard 754 (IEEE, 1985), which is today the most common
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Figure 1: A dead-time plant with a predictor-based controller. The controller consists of the

predictor Z (which is exponentially stable) and the stabilizing compensator C. Z is chosen

such that the augmented plant P aug(s) = Z(s) + P (s)e−sh is rational. Then C can be designed

as a stabilizing controller for P aug.

representation for real numbers on computers, including Intel-based PC’s, Macintoshes and

most Unix platforms, this number is regarded to be +∞ (INF) for h ≥ 0.71sec. Certainly, such

a component in a controller is not allowed in a practical application.

We observe that this problem arises due to a fast stable pole (here, p = −1000) of P .

A stable pole makes the real part of the exponent positive, and if this is large, the numerical

problem occurs. If the plant is completely unstable (there are no stable poles), then there will

be no such problem. Thus, if the plant has fast stable poles, then the predictor ZMSP from (3)

should not be used. An alternative predictor will be introduced below.

2.2 The unified Smith predictor

A natural solution to the numerical problem encountered in the previous subsection is to decom-

pose P into the sum of a stable part Ps and an unstable part Pu and then to construct predictors

for them, using the classical Smith predictor (2) for Ps(s)e
−sh and the modified Smith predictor

(3) for Pu(s)e
−sh. We propose a new term, unified Smith predictor (USP), for such a predictor.

As is well known, the rational part of the plant, P given in (1), can be split (decomposed) into

the sum of a stable part Ps and an unstable part Pu with ease, e.g., by applying a suitable linear

coordinate transformation in its state space. There exist a lot of such similarity transformations.

One of them, denoted here by V , can be obtained by bringing the system matrix A to the Jordan

canonical form J = V −1AV . (In MATLABTM, this is done by [ V J ] = jordan(A). ) Assume
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that V is a nonsingular matrix such that

P =


 V −1AV V −1B

CV D


 =




Au 0 Bu

0 As Bs

Cu Cs D


 , (5)

where As is stable and Au is completely unstable. As a matter of fact, the decomposition can

be done by splitting the complex plane along any vertical line Re s = α with α ≤ 0. Then the

eigenvalues of Au are all the eigenvalues λ of A with Re λ ≥ α, while As has the remaining

eigenvalues of A. In the sequel, in order to simplify the exposition, we use the imaginary axis

(α = 0) to split the complex plane. Now P can be split as P = Ps + Pu, where

Ps =


 As Bs

Cs 0


 and Pu =


 Au Bu

Cu D


 .

The predictor for the stable part Ps can be taken as a classical SP,

Zs(s) = Ps(s) − Ps(s)e
−sh, (6)

and the predictor for the unstable part Pu can be taken as the following MSP:

Zu(s) = P aug
u (s) − Pu(s)e

−sh, P aug
u

.
=


 Au Bu

Cue
−Auh 0


 .

Then the USP for the plant Ph(s) = P (s)e−sh is defined by Z = Zs + Zu, as shown in Figure

2. It is now clear that

Z(s) = P aug(s) − P (s)e−sh, (7)

where P aug = Ps + P aug
u and a realization of P aug is

P aug =


 A B

CEh 0


 =


 A EhB

C 0


 , Eh = V


 e−Auh 0

0 Is


V −1. (8)

Here, the identity Is has the same dimension as As and we have used that EhA = AEh. The

impulse response of the USP is not finite, unlike for the MSP. The above P aug is the augmented

plant, obtained by connecting the original plant and the USP in parallel. The stabilizing com-

pensator C in Figure 1 should be designed as a stabilizing controller for P aug.
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u (s) − Pu(s)e
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Figure 2: The unified Smith predictor Z = Zs +Zu. Here, Zs is a classical SP for Ps, the stable

part of P , and Zu is an MSP for Pu, the unstable part of P .

The use of the different predictors (SP, MSP and USP) is summarized in Table 1: when

the plant is stable, the USP reduces to the SP; when the plant is completely unstable, the USP

reduces to the MSP; when the plant is unstable but has some stable poles (mixed), then the USP

should be used, especially if some stable poles are fast (as explained earlier).

Type of plant stable completely unstable mixed

Type of USP SP MSP USP

Table 1: The type of USP needed for different types of plants

Returning to the example at the beginning of this section, the USP for it is given by

Z(s) =
1 − e−sh

s + 1000
+

e−h − e−sh

s − 1
.

Remark 1. A possible realization of Z consists of the finite-dimensional system

ż(t) = Az(t) + EhBu(t) − Bu(t − h)

v(t) = Cz(t) − Du(t− h)

together with a realization of a delay line (which is needed to generate the signal u(t − h)).

However, such a realization of Z would have hidden unstable modes. An alternative is to

realize Zs and Zu separately. The first is not a problem (it can be implemented dynamically),

while for Zu see the comments after (4) and Remark 4.
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Remark 2. Zs defined in (6) could be replaced by

Zs(s) = −Ps(s)e
−sh,

as in internal model control (Morari and Zafiriou, 1989). In this case, P aug in (8) would change,

since in the definition of Eh we would have to replace the identity Is by zero. Now P aug would

be simpler (it would have a lower order). This may be advantageous in the context of Figure 1.

However, in the more general framework of Figure 5 (in the next section) this may cause a rank

problem (as we shall see).

Remark 3. The USP (in particular, the SP and the MSP) can be generalized to multiple delays,

i.e., to the situation where the components u1, u2, . . . um of the vector u are delayed by h1, h2,

. . . hm ≥ 0. Denote H = diag(h1, h2, . . . hm) and

E ⊗ B =
[

Eh1b1 Eh2b2 . . . Ehmbm

]
,

where bk is the k-th column of B, i.e., B =
[

b1 b2 . . . bm

]
. Then

P aug =


 A E ⊗ B

C 0


 , Z(s) = P aug(s) − P (s)e−Hs (9)

and Z is exponentially stable.

Remark 4. We outline an implementation of Z from Remark 3 (the USP for multiple de-

lays) which avoids the problem of unstable modes. We use the notation from (5). We real-

ize the components Zu and Zs separately, but use the same delay lines for both, see Figure

3. The component Zu is a hybrid system, containing two copies of an LTI block with the

possibility of resetting, and the switches Sa, Sb and Sv. In this diagram, we have denoted

Bu =
[

β1 β2 . . . βm

]
and E ⊗ Bu =

[
e−Auh1β1 e−Auh2β2 . . . e−Auhmβm

]
. The

output of the USP is v = vs + vu, where vs = Zs u and vu = Zu u. vu is produced by one of the

two LTI blocks which can be reset by the signals Ra and Rb, respectively. When we reset one

of them, say the top one, at a time τ , we also switch its second input ua from ud to 0 using the

switch Sa. Afterwards, we reconnect ua
k to ud

k at the time τ + hk (k = 1, 2, . . . m). During this

time, vu = vb. After all the components of ud have been reconnected to the upper LTI block,

so that ua = ud, its output va will be the desired value of vu, and so the switch Sv can be set so
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that vu = va. The switches could, theoretically, remain in this position forever, but since Au is

unstable, tiny computational or rounding errors or the effect of noise will grow and will corrupt

the output va and hence vu. To prevent this, we reset the other LTI block (while switching the

components of ub, similarly as above, using the switch Sb) and, when the output vb becomes

correct, we switch Sv so that vu = vb. This cycle repeats itself indefinitely and it can be shown

that the USP is stable and produces the correct output. This implementation is related to the

resetting Smith predictor of (Mondié et al., 2001).

Au E ⊗ Bu −Bu

Cu 0 −D

�

�

�

Au −Bu E ⊗ Bu

Cu −D 0

�

�

�

As Bs −Bs

Cs 0 0

e−Hs

�

�
�

�

�
�

�

�
�

���

��

��

�

�

�

�

�

�

0

u
v

Zs

Ra

Rb

ud

udua

ub

va

vb

vu

vs

Sv

Sa

Sb

Figure 3: An implementation of the USP (9) for multiple delays, using two resetting LTI sys-

tems to implement the component Zu. The logical controller which controls the switches and

generates the resetting signals Ra and Rb (in an open loop manner) is not shown.

3 Control systems with a USP – equivalent diagrams

In this section we consider a more general type of plant, with two inputs and two outputs (each

of these signals may be vector-valued). The input signal w contains references and disturbances,

u is the control input, z is the tracking error and y is the measurement available to the controller.

Such a plant is commonly considered in robust control, see for example (Green and Limebeer,

1995; Zhou et al., 1996). We assume that the plant Ph consists of a rational part P and a delay
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by h > 0 acting on u, as shown in Figure 4. We denote

P =


 P11 P12

P21 P22


 =




A B1 B2

C1 D11 D12

C2 D21 D22


 . (10)

K is called a stabilizing controller for Ph if the transfer functions from the three external inputs

shown in Figure 4 to any other signal in the diagram are in H∞. K is called an exponentially

stabilizing controller for Ph if the same transfer functions are exponentially stable. In the sequel,

the two external signals appearing in the lower part of Figure 4 will be taken to be zero.

P (s)
e−sh

K(s)� �

Ph(s)

�

� �

�

y

z

u

w

�� �� �

Figure 4: The control system comprising a dead-time plant Ph (with a rational part P ) and a

stabilizing controller K. While P may be unstable, we would like the control system to be

(exponentially) stable and the transfer function from w to z to be small.

As in the previous section, let V be a nonsingular matrix such that

V −1AV =


 Au 0

0 As


 ,

where Au is completely unstable and As is stable. As in (7), we introduce the following USP

designed for the component P22 of the plant:

Z(s)
.
= P aug

22 (s) − P22(s)e
−sh, (11)

where, as in (8),

P aug
22

.
=


 A B2

C2Eh 0


 , Eh = V


 e−Auh 0

0 Is


V −1.

10



By connecting this USP in parallel with the u to y component of Ph, as shown in Figure 5, thus

creating a new measurement output yp, we obtain a new augmented plant

P aug(s) =


 P11(s) P12(s)e

−hs

P21(s) P aug
22 (s)


 . (12)

It is well known (and easy to see from Figure 5) that C is a stabilizing controller for P aug if

and only if K = C(I − ZC)−1 is a stabilizing controller for the original dead-time plant. The

same statement remains true with “exponentially stabilizing” in place of “stabilizing” (and, of

course, the corresponding set of controllers is smaller).

e−sh
P (s)

C(s)

Z(s)�

P aug(s)

�

�

�

�

�

��

�

y

wz

yp u

Figure 5: The control system from Figure 4, in which the controller K has been decomposed

into a USP denoted Z and a stabilizing compensator C, so that K = C(I − ZC)−1. The

augmented plant P aug consists of the plant Ph together with the USP.

We derive now an equivalent representation of P aug, which is useful for the problems treated

in the next section. Proposition 1 and Remark 5 below are related to Lemma 1 in (Mirkin and

Raskin, 2003) (the corresponding notation is ∆1 = Z1 and ∆2 = Z).

Proposition 1. We have

P aug(s) =


 Z1(s) 0

0 0


 +


 e−shI 0

0 I


 P̃ (s), (13)

where

Z1(s)
.
= P11(s) −


 A eAhB1

C1 0


 (s)e−sh,
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P̃ = P̃0 +


 P̃s 0

0 0


 , P̃0 =




A E−1
h B1 B2

C1 0 D12

C2Eh D21 0


 , (14)

P̃s =




As

[
0 eAsh − Is

]
V −1B1

C1V


 0

Is


 0


 . (15)

The block diagram corresponding to the decomposition (13)-(14) of P aug is in Figure 6.

P̃0(s)

e−sh

C(s)

P̃s(s)

Z1(s)

��� ���� �

�

�

�
P̃

yp

z0

z̃z

u

w

�

Figure 6: An equivalent representation of the control system in Figure 5, using the decomposi-

tion of P aug given in Proposition 1. Here, Z1 and P̃s are exponentially stable.

Proof. Using the partition (12) of P aug, the formula (13) (which we have to prove) is equivalent

to the following four formulas:

P11(s) = Z1(s) +





 A E−1

h B1

C1 0


 (s) + P̃s(s)


 e−sh, (16)

P12(s)e
−sh =


 A B2

C1 D12


 (s)e−sh,

P21 =


 A E−1

h B1

C2Eh D21


 , P aug

22 =


 A B2

C2Eh 0


 .
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The last three formulas are clearly true, so only the first formula (16) requires a little work. If

we rewrite

 A E−1

h B1

C1 0


 =




Au 0

0 As


 eAuh 0

0 Is


V −1B1

C1V 0




and if we rewrite

P̃s =




Au 0

0 As


 0 0

0 eAsh − Is


V −1B1

C1V 0


 ,

then (16) follows easily.

Note that if we would choose the USP described in Remark 2, then Ehwould become sin-

gular and hence the decomposition (14) of P̃ would have to be replaced by a more complicated

one. This is the rank problem mentioned in Remark 2.

Remark 5. It follows from Proposition 1 that the closed-loop transfer function Tzw from w to

z can be written as the sum of three terms:

Tzw(s) = Z1(s) + P̃s(s)e
−sh + Fl(P̃0(s), C(s))e−sh, (17)

where Fl(P̃0, C) is the transfer function from w to z0 in Figure 6. Z1 is an FIR system with im-

pulse response supported on [0, h], while the second and the third term have impulse responses

supported on [h,∞). Hence, if these terms are in H2(C0), then the first term is orthogonal to

the second and third term.

Remark 6. A realization of P̃ is given by

P̃ =




A 0 E−1
h B1 B2

0 As

[
0 eAsh − Is

]
V −1B1 0

C1 C1V


 0

Is


 0 D12

C2Eh 0 D21 0




. (18)

If P is completely unstable, then the dimensions of As and Is are zero and the block P̃s in
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Figure 6 disappears. In this case, Z reduces to an MSP and P̃ becomes

P̃ =




A eAhB1 B2

C1 0 D12

C2e
−Ah D21 0


 = P̃0.

If P is stable, then P̃ is reduced to

P̃ =




A 0 B1 B2

0 A (eAh − I)B1 0

C1 C1 0 D12

C2 0 D21 0




.

4 Applications

4.1 The parameterization of all stabilizing controllers

We consider the control system in Figure 4 and we derive necessary and sufficient conditions

on Ph for the existence of an exponentially stabilizing controller K. It is known that in general,

exponential stabilization for an infinite-dimensional plant is more difficult to achieve than sta-

bilization (in the H∞ sense) (Weiss et al., 2001). It turns out that in our particular setting, the

two problems are equivalent, and can be reduced to the stabilization of P̃0 from (14).

Theorem 2. The dead-time plant Ph shown in Figure 4 with a minimal realization of its rational

part as in (10) admits an (exponentially) stabilizing controller K (as defined in Section 3) if and

only if (A, B2) is stabilizable and (C2, A) is detectable. With the USP Z given in (11), every

such controller can be expressed as

K = C(I − ZC)−1, (19)

where C is an (exponentially) stabilizing controller for P̃0 defined in (14). Let F and L be such

that A + LC2 and A + B2F are stable, then every stabilizing C for P̃0 can be expressed as

C = Fl(M, Q), M =




A + B2F + E−1
h LC2Eh −E−1

h L B2

F 0 I

−C2Eh I 0


 (20)
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where Q ∈ H∞. Such a C is exponentially stabilizing if and only if Q is exponentially stable.

The closed-loop transfer function Tzw achieved by K from (19) is given by (17), where

Fl(P̃0, C) = Fl(N, Q),

N =




A + B2F −B2F E−1
h B1 B2

0 A + E−1
h LC2Eh E−1

h (B1 + LD21) 0

C1 + D12F −D12F 0 D12

0 C2Eh D21 0




.

Proof. As explained in the previous section, the control system in Figure 4 has an equivalent

representation shown in Figure 6. The blocks Z1 and P̃s in Figure 6 are exponentially stable,

so that they have no influence on the (exponential) stability of the whole system (since they are

not a part of any feedback loop). Thus, the (exponential) stability of the original closed-loop

system is equivalent to that of the system formed from P̃0 and C only.

First we discuss stabilization in the H∞ sense. Since P̃0 is rational, the parameterization of

the stabilizing controllers using M follows from (Zhou et al., 1996, p. 312) where we replace

C2 by C2Eh and L by E−1
h L. This is possible because A + LC2 is similar to A + E−1

h LC2Eh

(hence, A + LC2 is stable if and only if A + E−1
h LC2Eh is stable). For a rigorous derivation of

the parameterization for irrational plants, see (Curtain et al., 2001). The formula involving N

follows from (Zhou et al., 1996, p. 323).

Now we consider the exponential stabilization. Let α < 0 be such that all the eigenvalues

of A + B2F and A + LC2 are in the half-plane where Re s < α. Now all the arguments used to

derive the parameterization (20) of stabilizing controllers can be redone with H∞ replaced by

H∞(Cα), the space of bounded analytic functions on Cα. This will result in the same formulae

(20), but now Q must be in H∞(Cα).

4.2 The H2 problem

Consider again the feedback system from Figure 4. The H2 problem is to find a stabilizing

controller K which minimizes the H 2-norm of the transfer function Tzw. The solution of this

problem, using the modified Smith predictor, is well known, see (Mirkin and Raskin, 1999,
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2003) and the references therein. In this section, we will re-consider this problem using the

USP. We shall work with a minimal realization of P , of the form (10). Assume the following:

(A1) (A, B2) is stabilizable and (C2, A) is detectable;

(A2)


 A − jωI B2

C1 D12


 has full column rank ∀ω ∈ R;

(A3)


 A − jωI B1

C2 D21


 has full row rank ∀ω ∈ R;

(A4) D∗
12D12 = I and D21D

∗
21 = I .

Assumption (A4) is made just to simplify the exposition. In fact, only the non-singularity of

D∗
12D12 and D21D

∗
21 is required (Green and Limebeer, 1995; Zhou and Doyle, 1998).

As mentioned in Remark 5, the impulse response of Z1 is supported on [0, h] and the last

two terms of Tzw in (17) (which together are Fl(P̃ , C) delayed by h) are supported on [h,∞).

Assume for a moment that D11 = 0. Then it follows that Z1 is orthogonal (in H2) to the last

two terms of Tzw, so that

‖Tzw‖2
2 = ‖Z1‖2

2 +
∥∥∥Fl(P̃ , C)e−sh

∥∥∥2

2

= ‖Z1‖2
2 +

∥∥∥Fl(P̃ , C)
∥∥∥2

2
.

The H2 control problem of minimizing ‖Tzw‖2 over all stabilizing K is then converted to

γ = min
C

∥∥∥Fl(P̃ , C)
∥∥∥

2
(C stabilizing).

This is a finite-dimensional H 2 problem which can be solved using known results, see e.g.

(Zhou et al., 1996, Theorem 14.7 on p. 385). This last problem is meaningful even if D11 	= 0:

we are then minimizing the L2 norm of the impulse response of Tzw restricted to [h, ∞). Note

that the restriction to [0, h] is independent of C. Rewrite P̃ from (18) as

P̃ =




Ã B̃1 B̃2

C̃1 0 D12

C̃2 D21 0


 ,

then the solution of the H 2 problem involves the following two Hamiltonian matrices:

H2 =


 Ã 0

−C̃∗
1 C̃1 −Ã∗


 −


 B̃2

−C̃∗
1D12


[

D∗
12C̃1 B̃∗

2

]
,
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J2 =


 Ã∗ 0

−B̃1B̃
∗
1 −Ã


 −


 C̃∗

2

−B̃1D
∗
21


[

D21B̃
∗
1 C̃2

]
.

When the conditions (A1-A4) hold, these two Hamiltonian matrices belong to dom(Ric), as

defined in (Zhou et al., 1996), and moreover, X2
.
= Ric(H2) ≥ 0 and Y2

.
= Ric(J2) ≥ 0.

Theorem 3. There exists a unique optimal H2 controller

K = C(I − ZC)−1, C =


 Ã + B̃2F2 + L2C̃2 −L2

F2 0


 ,

where

F2 = −(B̃∗
2X2 + D∗

12C̃1), L2 = −(Y2C̃
∗
2 + B̃1D

∗
21).

Proof. The only thing to be verified is whether the conditions (A1)-(A4) hold for P̃ . Using the

zeros in the matrix in (18), we can see that this is true, since As is stable. The solution can be

obtained by applying Theorem 14.7 from (Zhou et al., 1996, p. 385).

5 Discussions and conclusions

We have pointed out a numerical problem with the modified Smith predictor when the plant

has fast stable poles and we have introduced the unified Smith predictor as a remedy. We have

derived an equivalent representation of the augmented plant consisting of a dead-time plant and

a unified Smith predictor. Using this representation, we have derived a parameterization of the

(exponentially) stabilizing controllers for the dead-time plant (with the USP connected to it)

and we have solved the standard H2 problem (again, in the presence of the USP).

The same numerical problem may arise also in the solution of the H∞ control problem

for dead-time plants (Meinsma and Zwart, 2000; Zhong, 2003b; Mirkin, 2003; Zhong, 2003e),

where the controller design involves the computation of e−Ah. A reasonable assumption is that

the computation of eAh does not cause such a problem (due to the unstable modes in A), because

otherwise the system “blows up” before the control can have any effect.
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