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Abstract. The observed dynamic behaviour of motorcycles suggests that interesting and significant
motions occur that are not currently understood. The most elaborate modelling exercise completed
so far has produced results that need confirmation and extension. The construction of these models
necessitates the use of automated methods and one such modelling methodology is described. The
automated model building platform that was used here is AutoSim. This code was used to generate
a variety of linear and nonlinear models in symbolic form. The relatively complex geometry of the
steering system and the front tyre force system is discussed in detail and a new method of checking
the self-consistency of the model is described and exploited. Sample results in the form of root-locus
plots for small perturbations from straight running and cornering equilibrium states are presented.
These are used to reproduce important findings from the literature. Conclusions are drawn on the
basis of the results presented.
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1. Introduction

Motorcycles have several interesting dynamic properties, some of which are al-
ready well understood. For example, anybody who has ridden a bicycle will realise
that above a certain low speed, the unstable roll (or capsize) instability disap-
pears as the speed increases. Once this stable speed has been reached, the machine
then displays lightly-damped oscillatory behaviours that are well understood in
the straight running case. The modes of oscillation are commonly called wobble
and weave and may be initiated by even small perturbations from straight running
[1–3]. These motions are only a relatively simple subset of the general machine
motions. There is growing evidence to suggest that more general motions are of
interest from rider safety and machine design points of view.

The linear theory of the small perturbation motions near to straight running is
well developed [1] and quite well validated by experiments [4–12]. The essential
ingredients of the theory are: (a) separate bodies for the front and rear frame that
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are joined via an inclined steering head; (b) spinning road wheels; (c) lateral trans-
lation, yaw and roll freedoms of the rear frame; (d) twist and steer freedoms of the
front frame relative to the rear frame; (e) a fairly elaborate steady-state tyre force
and moment system representation that may well be empirical in nature; (f) the lag
mechanisms by which tyre forces are delayed with respect to the slip phenomena
that produce them; (g) some aerodynamic effects, mainly so that tyre loads can
be properly adjusted as the motorcycle speed alters; and (h) some freedom for the
rider’s upper body to roll relative to the rear frame of the vehicle. The motions of
major interest occur at substantially constant speed, so that the forward speed of
the machine and the spin velocities of the road wheels may be constrained. When
the tyres are rolling without significant longitudinal slip, the tyre force system is
somewhat simplified, as compared with the completely general case.

As compared with the straight running case, there are more complex motions
associated with small perturbations from an equilibrium cornering condition. In
the cornering case, the motorcycle’s forward speed, yaw rate, lateral acceleration
and lean angle must be held at constant values. It should be noted that the geom-
etry of the machine, the tyre force system and the aerodynamic forces all change
with the lean angle. Also, what were previously decoupled lateral and vertical mo-
tions now become interactive. It therefore becomes essential to include main frame
bounce, pitch and suspension freedoms in addition to the modelling ingredients
listed above. The coupling of the in-plane and out-of-plane motions was discussed
by Jennings [13] and shown in detail by Koenen [14], whose work demonstrated
the analytical complexity of the theory at this level. We believe that this type of
cornering study is at the limit of practicality for hand analysis methods. Despite
one’s best efforts to eliminate errors, the detailed accuracy of this kind of model
is bound to remain suspect. The symbolic multi-body software system, AutoSim
[15], has been applied recently to the general motorcycle cornering problem by
Gani [16]. A small part of his achievement was the accurate recreation of the hand
derived results of Sharp [2]. This model is a fore-runner of the present model.

Advancing from the above small perturbation scenario, large geometry motions
and forcing from road irregularities, which causes time variation of parameter val-
ues, demand the inclusion of non-linear terms in the equations of motion. The
system dynamics contain new possibilities and there is mounting evidence from
machine usage that these issues require serious study. In the sequel we describe the
setting up of a model for the general motion of a motorcycle, using AutoSim [15].
The use of the model to find the trim cornering states and the linearised equations
of motion for small perturbations about those states is described. Most of the re-
sults included are intended for direct comparison with the corresponding studies
in [14]. This work may promote changes in design methods for high-performance
motorcycles. Some brief discussion of the full non-linear and time varying problem
with road profile forcing is included but a detailed study of these issues is for the
future.
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2. Fundamentals of AutoSim

AutoSim [15] is a language used to derive the equations of motion of general multi-
body systems and is based on the object oriented language LISP [17]. The syntactic
rules of AutoSim are straightforward. The output from AutoSim takes one of sev-
eral forms: (a) a Rich Text Format file containing the symbolic equations of motion
of the system described; (b) a ‘C’ or ‘FORTRAN’ language simulation program
with appropriate data files containing parameter values and simulation run control
parameters; or (c) linear state-space equations in a MATLAB ‘M-file’ format [18,
19]. It should be noted that AutoSim’s linearisation of the non-linear equations of
motion is symbolic and completely general. It is possible to determine the non-
linear steady turning equilibrium state and all the parameters required to describe
fully a small perturbation dynamics problem. The multi-body basis of AutoSim
is Kane’s equations [20], an expression of the virtual power or Jourdain principle
[21], which deals equally easily with holonomic and non-holonomic constraints.
The simulation programs written by AutoSim contain many software engineering
features which help to reduce execution times.

On occasions AutoSim expressions are used to explain the motorcycle mod-
elling theory and so it is important for the reader to pay some attention to the Au-
toSim programming language itself. At the core of the language are commands like
add-body, add-point, add-speed-constraint, add-line-force, add-strut, add-moment,
no-movement, etc., which, to some extent, are self-explanatory. Such commands
contain argument lists that are required to make their meaning precise. An AutoSim
program begins by defining an inertial reference frame n, with fixed origin, n0, and
fixed vector directions [nx], [ny] and [nz]. As new bodies are added, having
freedoms relative to n, local origins and axes are employed. All the reference axis
systems introduced are right-handed Cartesian sets and inertias are normally refer-
enced to axes parallel to these through the material body’s mass centre. AutoSim
can transform from local co-ordinates to global ones and vice-versa. Specifically,
points specified globally are conveniently used to define points in bodies. The
body-fixed points coincide with the corresponding global points, fixed in n, when
the system is in its nominal configuration.

There are several commands for defining and manipulating vectors. For exam-
ple, pos(p1,p2) defines a vector that points from p2 to p1; dot(vel(p1),[nz])
is the component of the absolute velocity of p1 in the direction [nz];
dir(pos(p1,p2)) is a unit vector in the direction p2 to p1; dplane([rwy],[nz])
is the projection of [rwy] onto the plane normal to [nz]; and cross(a,b) is the
vector product of a and b. In each case, the square brackets indicate a unit vector
along a (Cartesian) body axis. The ‘setsym’ command is used to define a new
symbol, such a symbol being identified by the ‘@’ character.

At the head of an AutoSim program are some commands that are used to reset
the system, define the gravitational field, select the unit system to be employed,
specify the simulation language in which the code written by AutoSim is to be
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Figure 1. Motorcycle model in its nominal state with the key points labelled.

generated, select the type of numerical integrator to be installed in the code and to
control the symbolic manipulations in various other ways. When the analyst does
not exercise choice overtly in these matters, AutoSim uses default settings from a
configuration file that the analyst is free to access.

3. Modelling the Motorcycle

The important parts of the motorcycle model are shown in Figure 1. The geometry
depicted here is that for the nominal configuration in static equilibrium and the key
points of the model are labelled. Prior work [6, 14, 22, 23] has shown that the com-
pliance of the rear frame is important, because it impacts on the dynamic properties
of the front frame via the boundary conditions. Other sources of compliance in the
frame are known to be less important [24] and are consequently ignored here.

The multi-body structure and the relative freedoms between the bodies are
shown in Figure 2. For completely general motions of the motorcycle, the wheel
spin freedoms would be left unconstrained with the rotations determined by a tyre
force model. In this study we concentrate on a more constrained set of possibili-
ties in which the longitudinal tyre forces are relatively small and the acceleration
or deceleration of the machine is modest. In these circumstances, the lateral and
longitudinal tyre force system interactions are small and can be neglected. In this
case an overt longitudinal tyre force description can be avoided by constraining
the wheels to rotate without longitudinal slip. The effect of such constraints is to
include in the calculations the gyroscopic torques due to the spinning wheels.

Due to the geometrical complexity in the region of the front tyre to ground
contact, which is further discussed in Section 3.1 and to which the kinematic
analysis of the Appendix relates, a precise description of the no-slip condition at
the front wheel leads to complex symbolic expressions, which AutoSim [15] will
deal with. Indeed, the fact that AutoSim will deal with these details is evidence
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Figure 2. Body structure diagram, showing the parent/child relationships and relative free-
doms allowed.

of its manipulative computational power. The effect of this precise but complex
description is to marginally alter the magnitude of the gyroscopic torque due to the
spin of the front wheel. As a result, it is appropriate to approximate these effects
when dealing with the no-slip condition associated with the front wheel spin.

Adding forces to represent the effects of suspension springs and dampers and
aerodynamics is straightforward. Similarly, moments are added to deal with the
rider-upper-body-lean torque relative to the rear frame, the torque due to twisting
the frame in the region of the steering head and aerodynamic effects. In order to
describe the tyre forces and moments, it is necessary to consider the geometry of
the system treated in some detail. The front frame geometry is relatively complex.

3.1. SOME GEOMETRIC DETAILS

Each wheel/tyre combination is treated as a thin disc with a radial flexibility. In its
most physical form, the tyre has a massless outer ring making point contact with
the ground. This outer ring can translate in the direction from the contact point
to the wheel centre, relative to the massive part of the wheel. Corresponding to
the translation described, the compliant material of the tyre sidewall is deflected
and an appropriate spring restoring force is developed. When the motorcycle is in
its nominal configuration, the tyre is loaded, the material strained and there is a
force built into the sidewall structure. This force can be calculated from the static
equilibrium conditions. Any change in deflection from the nominal is accompanied
by a force change that is easy to describe. Such a laterally rigid tyre does not
yield a realistic relaxation behaviour, so this is imposed by including conventional
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Figure 3. The tyre loading showing a radial deformation of the structure and a mutual
dependency of vertical load and sideforce. View from rear.

first order lag equations to relate tyre sideforce and aligning torque to sideslip and
camber angles; see Section 3.2.

The tyre loading is illustrated in Figure 3 in which it can be seen that the vertical
load on the tyre will influence the tyre sideforce via the tyre force model. The
sideforce will in turn affect the vertical load through the equilibrium requirements
of the massless outer ring. Due to the lagging of the tyre lateral forces described
above and further in Section 3.2, the apparent circular dependency is avoided in the
model. The side forces for the current instant in time follow from the past history
of these forces via the first order lag equations.

The geometry of the front frame and wheel is shown in some detail in Figure 4.
The wheel camber angle is found as the arcsine of the vertical component of the
wheel spindle unit vector asin(dot([fwy],[yaw_frz])). The lateral direction
unit vector, fw_lat, is defined from the projection of the wheel spindle unit-vector
onto the ground plane dir(dplane([fwy],[yaw_frz])) and the longitudinal unit
vector, fw_long, is set perpendicular to both the lateral and vertical directions
dir(cross(@fw_lat,[yaw_frz])). The vertical component of the vector joining
the origin of the yaw frame to the front wheel centre is the height from the ground
of the wheel centre. Dividing this by the camber angle gives the distance from
wheel centre to the ground contact point. In the nominal condition, this distance
is the wheel radius, so the tyre radial deflection from the nominal can be found
by subtraction. This deflection is converted into a force change via the tyre radial
stiffness. Adding the nominal state force gives the tyre radial force. The direction
joining the wheel centre to the contact point is perpendicular to the wheel spindle
(the normal to the wheel plane) and the long direction, so the unit vector can be
set using the vector product cross(@fw_long,[fwy]). The magnitude and direc-
tion of the line joining wheel centre to contact point are next combined to give
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Figure 4. Front wheel and tyre geometry, showing method for describing ground contact
point.

the vector: dot(pos(yaw_fr0,fw0),[yaw_frz])∗cross(@fw_long,[fwy])/
cos(@phif), which is then resolved in the wheel axis directions [fwx] and
[fwz] to define the coordinates of the contact point in the wheel system:
dot(@fwf_vec,[fwx]) and dot(@fwf_vec,[fwz]). The contact point (fwcp)
is defined by its coordinates as a moving point in the wheel. This point is used to
calculate the sideslip angle and it is the point of application of the load and the
sideforce.

The sideslip angle is the arcsine of the velocity of the contact
point in the lateral direction divided by the magnitude of its velocity
asin(dot(dir(vel(fwcp)),@fw_lat)). The load, the slip angle and the camber
angle are converted to tyre forces and moments according to Koenen’s tyre model
[14]; see Section 3.2.

In other work [16], we have preferred to use Sakai’s results [25] as a basis for
this and more recently, Magic Formula methods have been applied to the motor-
cycle tyre [26, 27], with the possibility of improving on previous methods. One of
the immediate objectives is to reproduce Koenen’s motorcycle results [16] using
essentially his model and parameter values and to test the technical precision of
his analysis. For this narrow purpose, his model is clearly the best, so we adopt it
somewhat uncritically. In the case of the real tyre, the contact point moves round
the sidewall as the wheel cambers, giving rise to an overturning moment. This
effect is not reproduced in the thin disc tyre assumed, so the overturning moment
is calculated separately and added. This calculation is illustrated in Figure 5.
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Figure 5. Rounded profile of a typical motorcycle tyre, showing how the overturning moment,
Mxf , arises and how it is computed.

3.2. TYRE FORCE AND MOMENT DESCRIPTIONS

According to Koenen [16], the tyre produces a side force in response to side-
slip and camber angles, an aligning moment in response to side-slip and camber
angles and an overturning moment in response to camber angle. Koenen also
included turn-slip in his model but found the influences negligible, so we have
omitted that mechanism here. Force responses to side-slip are lagged through a
conventional first-order lag relation and the aligning moment from slip is similarly
lagged. Aligning moments from camber and overturning moments are assumed to
be instantaneous.

Tyre force coefficients, cornering stiffnesses, camber stiffnesses, the pneumatic
trail, relaxation lengths and so on for the nominal state, together with their load
sensitivities, are required data. The camber sensitivity of the cornering stiffness
is also accounted for. With the cornering stiffness adjusted for load and camber
changes from nominal, the steady state side force is then taken to be proportional
to the slip angle. No slip saturation mechanism is accommodated, on the basis that
the slip angles will always be small enough for this to be reasonable. A similar
description for the side force due to camber is provided but the camber influence
on the camber stiffness, in this case makes for a parabolic dependence of force on
angle.

The aligning moment response to side-slip involves representing the pneumatic
trail as linearly decreasing as the absolute value of the slip angle increases and
being proportional to the square root of the tyre load to the nominal load ratio. The
aligning moment due to camber is proportional to camber angle via a coefficient
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that decreases linearly with the absolute camber angle and is proportional to the
load ratio to the power 2.5. The overturning moment was described earlier. The
relaxation length used in the lag equations is taken to be proportional to the square
root of the load ratio. The precise relations used can be observed in the program
listing at http://www.ee.ic.ac.uk/control/motorcycles/.

3.3. CONTROL OF SPEED AND STEADY TURNING LEAN ANGLE BY RIDER

Simple control systems are used to establish the required values for the forward
speed and lean angle. The speed controller is a simple proportional-integral scheme
that acts on the speed error to produce a torque that acts on the rear wheel from the
main frame. The control gains were found by simple trial and error techniques. A
cornering manoeuvre can be enforced via a lean angle controller. The lean angle
controller has proportional-integral-derivative terms which operate on the error be-
tween a reference lean angle and the actual lean angle to produce a steering torque.
Again, this controller was tuned by trial. As one moves towards higher values of
lean angle at low or high speeds, this tuning process becomes more difficult. It goes
without saying that if the controller gains are set incorrectly, the simulation model
may go unstable.

3.4. MOTORCYCLE DESIGN PARAMETER VALUES

The intention was to represent Koenen’s machine [16] as closely as possible and
as a consequence his parameter values were used whenever appropriate. Our para-
meters are specified in the AutoSim model file listing, in the ‘(set-defaults)’
command. In this command, each symbol is followed by its numerical value in SI
units. It must be said that some uncertainty exists in respect of Koenen’s frame twist
damping (Cp_twst) and rider upper body damping (Cp_ubr) parameters. These are
derived from the specification of the damping factors of the relevant decoupled
modes, 0.1 for the frame twist and 0.25 for the rider, using the single degree of
freedom system formula: Coefficient = 2∗factor∗sqrt(stiffness∗mass). In Koenen’s
expressions, the square root is missing and it is unclear how the omission should
be interpreted. We have tried both possibilities and concluded that the problem
is likely to be one of documentation. The square-root is presumed present in our
computation of the parameters Cp_twst and Cp_ubr.

4. Diagnostics and Accuracy Checking

It is obviously important to try and validate new theoretical results by checking
them against experimental results. At the present time this is not possible in the
case of motorcycle handling over a wide range of running conditions. The test
track, instrumentation and rider requirements for such testing are considerable,
implying substantial resources and some danger. It follows that all the reasonable
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challenges to a new and unproven model should be posed and the model should
only be accepted as a basis for the prediction of behaviour if all challenges fail to
reveal any errors, or inconsistencies with known phenomena. The first such check
with a new model is to do with ensuring that the model built by the modelling
system is the same as the one conceived by the analyst. This is considered first.
Following that some deeper challenges are described.

After AutoSim load has built a model, one can perform a number of elementary
checks to see if the model is as expected. To start, the positions of all the points in
local and global coordinates, the orientations of all bodies, the forces and moments
added and the coordinates and the selected generalised speeds can be listed. Best
practice is to check the model at this elementary level, before checking the dynamic
properties of the simulation. Our model has, of course, proven satisfactory in this
respect.

The next stage in the checking process comes from the observation that mo-
torcycle accelerations are relatively simple in the equilibrium turning (trim) state.
All the bodies have virtually the same (centripetal) acceleration towards the centre
of the turn, so that the ‘inertia forces’ can be given a vector description for this
restricted set of conditions. This description has a large degree of independence
from the full AutoSim model description. In the latter, much of the work that
AutoSim carries out is to evaluate the full set of inertia forces, for quite general
motions of the material system, according to Kane’s equations. In the former,
the analyst devises the vector expressions required and AutoSim merely evaluates
them. ‘Equilibrium’ equations, having a large degree of independence from the
original model, can then be constructed. These equations must be substantially
satisfied by the state variable values and forces and moments yielded by the full
simulation, when the motorcycle settles into a steady turn, trim condition. The
checking process is to run the rider-stabilised model to a defined steady state
turning condition and to find that state. The state variables are then provided as
data to the equilibrium checking equations. If all is well, the force and moment
summations all come to zero. The coding included towards the end of the pro-
gram listing at http://www.ee.ic.ac.uk/control/motorcycles shows this process in
full detail. Commands are included as follows:

1. Specify an inertia force ‘-m∗tu(yaw_fr,1)*ru(yaw_fr) in the direc-
tion [yaw_fry] for each mass, m, at its mass centre. The expression
tu(yaw_fr,1) is the forward speed, while ru(yaw_fr) is the motorcycle yaw
rate. The vector from yaw_fr0, the origin at the nominal contact point of the
rear tyre, to the mass centre is of the form "‘pos(mcmc,yaw_fr0)’.

2. Specify a gravitational force ‘m*g’ in direction [yaw_frz] on each mass at its
mass centre.

3. Specify a moment of momentum ‘Ifwy*ru(fw)*[fwy]’ with the front wheel
spin and ‘Irwy*ru(rw)*[rwy]’ with the rear wheel spin; Ifwy and Irwy are
the wheel spin inertias.
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4. Calculate the rates of change of these moments of momentum as
‘cross(ru(yaw_fr)*[yaw_frz], Ifwy*ru(fw)*[fwy])’ and
‘cross(ru(yaw_fr)*[yaw_frz], Irwy*ru(rw)*[rwy])’.

5. Write out the sum of the lateral tyre forces, the lateral aerodynamic lift force
and the lateral inertia forces.

6. Write out the sum of the vertical tyre forces, the vertical aerodynamic lift force
and the gravitational forces.

7. Calculate the sum of the moments of forces and moments themselves about
yaw_fr0. Include front tyre vertical and lateral forces; both aligning moments;
both overturning moments; the aerodynamic drag and lift forces; the inertia
forces and the gyroscopic moments (the negatives of the rates of change of
moment of momentum).

8. Output the scalar components of the total moment of force about yaw_fr0.

Zero outputs in stages 5, 6 and 8 indicate a match (for the steady turn) between
the full inertia force system for general conditions worked out by AutoSim and the
simplified version for steady-state cornering described above. Again, the code has
been developed to the point where these checks have proved successful.

5. Results

The main results to be included are root-locus plots for the nominal motorcycle
in straight running and cornering at trim lean angles of 0.4 and 0.8 rad. Also, the
influences of suspension damping changes on the loci at 0.8 rad lean are studied.
Koenen [14] included each of these plots and, in respect of suspension damping
effects, his results were noticeably in conflict with the experimental results of Weir
and Zellner [8], the statements of Jennings [13] and general experience. It is vital to
check the results of our model against those of Koenen. In addition, it is of interest
to study the suspension damper influences, since a conflict of evidence currently
exists on this issue of practical importance.

We began by checking that the diagnostics outlined above were operating sat-
isfactorily. The next stage in the generation of results is to set up a process for
solving the general steady turning equilibrium problem. This can be done by re-
peatedly running the C program written by AutoSim to the desired equilibrium
condition. A preferred alternative is to carry out a low acceleration, or deceleration
rate simulation run in which the machine passes slowly through the full range of
speeds of interest. During this process, the desired roll angle is maintained by the
steering controller action. Good controller settings were found by trial, enabling
the (simulated) machine to stably settle into the desired steady-state. This is partic-
ularly difficult at high roll angles and at the ends of the speed range. The controllers
need tuning anew for each lean angle. In effect, the nonlinear differential equations
together with the speed controller combine to provide an algorithm for solving the
nonlinear algebraic steady-state equations.
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Figure 6. Quasi-equilibrium states for the straight running motorcycle decelerating at
0.2 m/s/s from high speed under the action of aerodynamic forces.

For straight running, the symmetry of the motorcycle leads to a zero state for all
the out-of-plane variables corresponding to equilibrium. The aerodynamic forces
cause some changes with speed in the in-plane variables and wheel loadings. Put
another way, the aerodynamic forces cause a change in the machine posture with
speed. The quasi-steady solutions are illustrated in Figure 6, covering deceleration
from 75 to 2 m/s in 365 s. The bounce and pitch of the main frame, the angle of
the swing arm and the front fork suspension displacement are shown. The resulting
quasi-equilibrium states were then used by the linear analysis program to generate
the root-locus plot in Figure 7.

The loci are of the form expected, showing weave and wobble modes with their
known dependencies (in general terms) on speed and the in-plane modes involving
bounce, pitch and wheel hop. As expected, the pitch, bounce and wheel hop modes
are relatively insensitive to speed variations. Note that the nomenclature is due to
Koenen. Although the loci are similar to those of Koenen, they are certainly not
identical.

For the cornering cases, the general procedure is the same. The only new com-
plexity comes from the fact that the cornering equilibrium states involve changes
in the out-of-plane variables in addition to those shown in Figure 6. Some of the
variables comprising the steady state solution for 0.4 rad lean angle are shown
in Figure 8. The full set entails, in addition, the rider upper body lean angle, the
frame twist angle, the main frame lateral velocity, the yaw velocity, the tyre side-
forces from slip and camber and the tyre aligning moments. The notable features in
these equilibrium state results are the accuracy with which the steering controller
maintains the desired lean angle and the relatively large values of steer angle for
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Figure 7. Root-locus plot for standard motorcycle in straight running over the speed range 2
to 75 m/s. The lowest speed points are marked with squares, while the highest speed points
are marked with stars.

low speed operation. The controllers are, of course, only used as a means of solving
the equilibrium equations. They are omitted in the calculation of the root loci, so
that these loci relate to the uncontrolled motorcycle.

Loci for 0.4 rad lean and for 0.8 rad lean are shown in Figures 9 and 10,
respectively.

At 0.4 rad lean, the weave mode at high speed is de-stabilised just a little as
compared with straight running. At high speed, a slow exponential instability also
occurs. The wobble mode locus is not changed significantly. Strictly, of course,
these modes involve both out-of-plane and in-plane variables and a full verbal
description would require more complex terminology, but we will refrain from
elaborating this point. At 0.8 rad lean, a 1 to 1.5 Hz mode is marginally unsta-
ble from low to medium speeds, when it stabilises. The cornering weave mode
becomes unstable at approximately the same high speed as for 0.4 rad lean angle
case.

The influences of suspension damping changes on the 0.8 rad lean angle case
are shown in Figs 11 and 12. The damper coefficients are doubled in the one case
and set to zero in the other. For this lean angle, the suspension dampers are shown
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Figure 8. Equilibrium values for 0.4 rad lean angle for motorcycle decelerating at 0.23 m/s/s.

Figure 9. Root-locus plot for standard motorcycle at 0.4 rad lean angle over the speed range
6.9 m/s (squares) to 73.2 m/s (stars).
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Figure 10. Root-locus plot for standard motorcycle at 0.8 rad lean angle over the speed range
7 m/s (squares) to 68 m/s (stars).

to play a role in stabilising the machine and this accords with the conventional
practical wisdom. With double suspension damping, both the problem modes are
substantially improved. With no suspension damping, unstable oscillations with
frequencies 1 to 1.5 Hz, 3 Hz and 10 Hz all appear. This is contrary to Koenen’s
predictions, reinforcing the view that the present results are substantially at vari-
ance with those in Koenen’s studies and much more closely aligned with practical
evidence.

6. Conclusions

A significant contribution to modelling the steering behaviour of motorcycles has
been made. The model is thought to be more general and more powerful than any
other in the public domain. Its generality implies that it requires quite extensive
parametric data for geometry, masses and mass distributions, frame and suspension
stiffnesses and tyre forces and moments. The AutoSim code can be down-loaded
from http://www.ee.ic.ac.uk/control/motorcycles/. It can be used directly by Au-
toSim users and, of course, can easily be developed by them to their own taste.
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Figure 11. Root-locus plot for modified motorcycle at 0.8 rad lean angle over speed range
7 m/s (squares) to 68 m/s (stars); front and rear suspension damping coefficients twice
nominal.

Alternatively, the ideas exposed can be used in other model building systems. The
discussions of the geometric complexity in the steering system and front tyre con-
tact with the ground and the diagnostic checking of the steady turning equilibrium
should be particularly helpful. There is novelty also in the employment of feedback
controllers to efficiently establish specified cornering equilibrium states prior to
testing the stability.

The fundamental patterns of behaviour in the case of the cornering machine
established by Koenen have been reproduced. In particular, the in-plane and out-
of-plane modes, which are decoupled for straight running, become increasingly
interdependent as the steady turn lean angle increases and root loci generated show
patterns similar to those of Koenen. However, the detailed results are not the same
and it must be concluded that one, or the other sets of results are erroneous. In this
context, the achievement of results using only hand analysis and coding required
monumental dedication by Koenen, and it should not be considered surprising that
the details cannot be reproduced. The present results gain some credibility from the
use of an automated model builder with a history of successes [28] and from the
critical use of diagnostic checks, especially of the steady turning equilibrium states.
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Figure 12. Root-locus plot for modified motorcycle at 0.8 rad lean angle over speed range
7 m/s (squares) to 68 m/s (stars); both front and rear suspension damping coefficients set to
zero.

With respect to the perceived major prediction problem from Koenen’s work,
concerning the influence of suspension damping on the stability of the cornering
weave mode, the present results conflict with Koenen and agree with experimental
evidence [8, 13] and anecdotal evidence. It is believed that the model described
is sound and that it provides a base for the predictive design of motorcycles and
further analysis of motorcycle cornering behaviour.

Recent accident investigations suggest that road profile forcing has a role to
play in exciting unstable oscillatory responses. As a result, road profiling is being
incorporated into our models at the present time. We have a particular interest
in motorcycle speed and road wavelength conditions which produce a resonant
excitation of the lightly damped modes. This coincidence of circumstances has
certainly been observed in relation to the cornering weave problem [29]. Further,
nonlinear behaviour, giving significance to whole number relationships between
forcing and response frequencies, is of great interest and is to be examined by
simulation and other means in an ongoing project supported by the UK Engineering
and Physical Sciences Research Council.
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Figure A1. Front tyre contact point migration angle as a function of lean angle and steer angle,
for a motorcycle with 29.8 degrees steering head angle.

Appendix: Migration of Contact Point Round Tyre Circumference for Large
Lean and Steer Angles

To find the extent of the migration of the front tyre/road contact point
away from its nominal position with respect to the front suspension (lower
forks) body, an AutoSim kinematic analysis program was written, see
http://www.ic.ac.uk/control/motorcycles/. This program treats a rotating thin disc
wheel, with its axle subject to successive rotations, roll, pitch, twist (about an axis
inclined to the horizontal at the steering head angle) and steer. It derives the vertical
projection of the wheel radius vector as a function of the wheel spin angle, given
specific values of roll, pitch, twist and steer angles. This result is contained in sym-
bolic form in the RTF file written by AutoSim. It is of the form: a∗cos q+b∗sin q,
where q is the wheel spin angle. Details of the expressions a and b can be seen in
the MATLAB listing at http:/www.ee.ic.ac.uk/control/motorcycles/. The RTF file
expressions were copied and pasted across into this code.

The condition on q for the projection of the radius vector on the vertical to be a
maximum is that d/dq(a ∗ cos q + b ∗ sin q) = 0; i.e. tan q = b/a. The MATLAB
program computes q for given values of the angles and the results are plotted in
Figure A1 for the special case of 29.8 degrees steering head angle, zero pitch and
zero twist. Pitching of the bike causes the contact point to migrate to the extent
of the pitch angle, in the appropriate direction, irrespective of the lean and steer
angles. The frame twist angle is always very small in practice and its influence has
been found, by just a few trials, to be a small fraction of the twist angle itself.
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