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Equiripple Minimum Phase FIR Filter Design From
Linear Phase Systems Using Root Moments

Tania Stathaki and loannis Fotinopoulos

Abstract—In this brief we propose to design a minimum phase ~ The main advantage of LP filters is constant time delay over
finite-impulse response (FIR) digital filter transfer functionfroma  the entire band. This is a useful property in certain applica-
given equiripple linear phase FIR transfer function which has iden- tions such as data transmission, which requires a nondisper-

tical amplitude. The brief deals with two importantissues. The first . h It id bl has int bol interf
issue is that we are concentrating on very high degree polynomials SIV€ channel 1o avold problems such as Intersymbol Interierence

for which factorization procedures for root extraction are unreli- ~ (ISI). The most popular existing method for the design of LP
able. A novel approach is taken, that involves the use of a set of pa- FIR filters is the Reméz exchange algorithm [1], [2].

rameters called root moments of a polynomial, derivable directly However, MP FIR filters are also known to have certain ad-
from the polynomial coefficients that immensely facilitate the fac- vantages. The MP filter exhibits a very significant saving in

torization of polynomials of very large order. The second issue is . . .
that the polynomials we deal with have roots on the unit circle. In group delay for high orders, compared with the LP equivalent.

the paper we propose a method to overcome this pr0b|em_ The re- It also exhibits reduced order for giVen gain SpeCificationS, and
sults of the proposed design scheme are very encouraging as far adower coefficient sensitivity to quantization error, when com-

robustness and computational complexity are concerned. pared with the more common LP filters.
Index Terms—Group delay, linear phase filters, minimum phase In this study we are focusing on applications where the LP
filters, Remez exchange algorithm, root moments. characteristic may not be necessary. In fact, the associated ex-

cess group delay for such filters may even be undesirable for
many applications. A representative example is in telecommu-

S o _ nications where long time delays increase the problems of echo
F|n|te—|mpulse response (FIR) digital filters have beegng singing on voice lines. The solution to achieving lower time

extensively studied in the past years for several reasoggiay is the implementation of a MP design.

Among these are the properties of stability and high-speedanother application is speech processing. The fact that in
implementation using the fast Fourier transform (FFT) or othgpeech channels phase dispersion is of less importance since the
number-theoretic transforms. Discussions of some of the masg}; is rather insensitive to phase distortion, is a very important
popular design methods for FIR filters, and references to somg e that stimulates efforts for MP FIR filter designs.
of the literature, are contained in [1]-[4]. We concentrate on Therefore, a MP design in order to reduce group delay
real FIR transfer functions and in this context we can cIassi{Mrough the filter is of fundamental importance.
them into three main categories: 1) linear phase (LP), in whichThere is a quite significant amount of work concerning the
all passband zeros are in conjugate reciprocal pairs around agjgn of MP FIR filters. Below we summarize the most repre-
unit circle; 2) minimum phase (MP), where all passband zerggntative contributions in the area.
are inside the unit circle; and 3) a general nonlinear, nonMP | 1976 Holtet al. [9] demonstrated how to use the Reméz
category, where neither of the first two conditions hold. exchange algorithm [1] in order to approximate both amplitude

However, most of the work done is concentrated on LP filhg phase response of a nonlinear phase filter. The amplitude
ters [2]. This may be due, in part, to the availability of efficienfesponse performance of the resulting filter is somewhat worse
FIR linear phase filter design algorithms which rely on the for[10] than of optimal (i.e., minimal order) LP filters.
mulation of optimization methods for the design of a desired Herrmann and Schuessler [11] have presented a method of
magnitude response [2]. For example, a class of optimizatigansforming equiripple LP FIR filters into MP FIR filters with
methods for designing FIR filters [2] are based on the assumpyf the degree and the same type of attenuation characteristics
tion that the filter coefficients are symmetrical (or antisymmelp, the modulus squared. Their technique has been extended by
rical) and this implies that the filter is LP as already mentioneg,rris [12] to more general filter specifications. When this tech-
The research efforts that have been devoted to the LP case hauge is used to transform multiband or nonequiripple filters,
resulted in powerful and efficient computer algorithms (e.g., thge optimality of the filter is not necessarily maintained. More-
widely used computer program by McClellanal.[3]). Ingen-  oyer, using this technique, it is difficult to impoagriori design
eral, we can say that design algorithms for the MP case tendsjucifications such as the ratio of the passband and stopband
be significantly more complicated than those for LP. ripple of the resulting MP filter. Nevertheless for a given partic-

ular LP filter, a posteriori the ratio and ripple of the MP filter,
Manuscript received December 1999; revised June 2001. This paper was W&ich would result upon transformation, can be calculated.

I. INTRODUCTION
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using the last approach, need fewer coefficients than optimal LPIn [20] Chit and Mason proposed a hew adaptive design algo-
filters with the same gain response specifications. In his specifithm, extending earlier work of the same authors on optimum
example, when changing from the LP filter to the MP equivalehf filters with a priori constrained (anti)symmetric impulse re-
the number of coefficients is reduced from 25 to 15, Howevesponses [21].
Burris gives just one example, for a oneband shaping filter, inIn [22] (a study by Rasmussen and Etter following the work
which the response is not equiripple and thus may also be sdbne in [23], [24]), the design algorithm requires a gain spec-
optimum. ification in a manner identical to the LP case. Conditions for
In [14] a method is presented by Gilchrist, which can be usegtimality are investigated in terms of the zeros’ configuration,
for the direct design of MP FIR digital fillers with arbitrary equiripple characteristics, minimax and LMS criteria. The re-
prescribed modulus-squared characteristics. This method usel$ is a very flexible MP FIR filter design technique, with the
the Fletcher-Powell optimization technique to minimizelap potential to accommodate a number of different filter structures
norm to obtain a nonnegative polynomial fit to the desired chaand types. In [22] the authors treat the MP FIR estimate of an
acteristics in a transformed domain. The coefficients of the filteinknown system as a constrained optimization problem in the
are then obtained from the zeros of this polynomial obtainegnse that the zeros of the model must be constrained to be
through normal factorization processes. Examples of low-pasihin the unit circle. The authors compare several structures
and band-pass filter designs are given usingLag norm. A for adaptively obtaining the optimum FIR MP filter model for
comparison of the passband and stopband ripples and their ratiounknown FIR system.
is made with LP filter designs. However, Gilchrist shows that an In our proposed method a new approach for polynomial fac-
equiripple MP filter and a LP filter designed using the Remédmrization without root finding is attempted. The approach taken
exchange algorithm, with the same order and frequency bandolves the use of the Cauchy Residue Theorem applied to
edges, have the same deviations. Hence the Gilchrist solutithrg contour integral of the logarithmic derivative of the transfer
although equiripple, cannot be optimum. function around appropriate curves. This leads into a set of pa-
In [15] Foxalet al. compare the calculated and measured reameters, the root moments, derivable directly from the poly-
sponse of a MP CCD low-pass transversal filter with that forromial coefficients that facilitate the factorization problem. In
LP design with the same magnitude characteristics. It is shoagdition, the results of the proposed design scheme are very en-
that the MP design can offer up to an order of magnitude imgouraging as far as robustness and computational complexity
provement in group delay, and is also less sensitive to transfse concerned.
inefficiency and tap-weight error than the LP design. The two
approaches, linear and MP design are compared on the basis of [I. BACKGROUND
group Qelay and sensitivity to change transfer inefficiency aIXZ! LP FIR Filter Transfer Eunctions
coefficient error. . o _
In [16], Goldberget al. discuss some aspects of a design We consider a LP real FIR digital filter transfer function
method similar to the one proposed by Herrreaal.[11]. First, Naving the following form:

the prototype LP filter is designed using more efficient design n
methods than the one usedin [11]. Then, a discussionis given gii(z) = 2" thiZ" b 2 4Ry, = H (z—ri). (1)
the problem of defining the specifications on the prototype LP i=1

filter. Next, the performance of the resulting NLP filter is theo-

retically and practically compared to that of the optimal (minlr_te(;agr?ser;rzggfne[sllh;h:t rir:nZR fllte:;:]has :‘ Pifits UF Itsam dptl.e
imal order) LP filter. Finally, some practical limitations in usin P ISt y fy orthe anti-symmetry condition

the proposed design method are brought up, and an alterna I\f}gwn below

design method is proposed in order to avoid these limitations. hy = +h,_, i=0.1.. . n.

However only MP filters are obtainable and a factorization pro- ’ ’ ’

cedure is required. In that case, the impulse response is called symmetric iftie “

In [17] a procedure for circumventing the difficult problemholds or anti-symmetric otherwise. The above condition implies
of locating the roots of a (generally) high-order polynomial ag4] that if a given LP FIR filter transfer function has a zero at
curately is proposed by Mian and Nainer. This is based on th locationr;, it will also have zeros at locations'r;, + and
work presented in [18] by Schmidt and Rabiner. To this put-/r¥ for |r;| # 1.
pose, itis shown that the use of a basic property of the complexX_et us suppose that the roots of the polynon#idk) are de-
cepstrum reduces the factorization problem (or, equivalently iidted byr; as in (1).
the time domain, the deconvolution problem) essentially to thewe employ the following notation:
computation of two FFT’s. Examples are given whichiillustrate . ,.. — ;. . if the rootr is inside the unit circle.
the proposed procedure. The authors are inspired from the work, e = T{Out if the rootr; is outside the unit circle.
done in [19], where it is necessary to solve for the roots of a , Py = 7’20 if the rootr; is on the unit circle.
mirror-image polynomial and to factorize them suitably, in orde||:hus we can write
to obtain the MP counterpart. The algorithm demands 1) aLP '
prototype; 2) the determination of the zeros’ configuration of
that prototype; and 3) the remapping of the zeros, using a ni#(z) = | [[ (z = i) | |[[(z = mioue) | |]] = = 7s0)
merical search technique to achieve an optimum MP filter. j j j
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or 2) Find H,(2).
3) Construct the transfer function asr’(z) =
H(Z) = Hmin(z)Hmax(z)Ho(z) [Hmin(z)]QHo(z).
Then we shall havél'(¢i?)| = |H(&?)).

Both step 1) and step 2) imply at first glance that a root finding
procedure may be required. However, as already pointed out,
root finding procedures are known to be inaccurate and unre-
liable for large order polynomials. Factorization without root

H(w) = A(w)ejg(w) finding forms also the basis of t.he procedure developed in [7],
[8], and [17]. In [7] and [17] use is made of the real cepstral pa-
are described in terms of both gait{w) and phas#(w). The rameters, where the cepstral aliasing problem is'recognized and
gain is always specified explicitly and approximated in any prag@reful procedures are recommended to reduce its effects. In [8]
tical scheme, whereas the phase depends on its type, i.e., LP,fifg @pproach the factorization problem from the Lagrange in-

or NMP. The group delay of afilter, (w), is defined as follows: terpolation point of view. In the above procedures it is assumed
that the zeros of the transfer function on the unit circle are

_do(w) priori known. We make no such assumption in our present work.
To =TT An alternative and direct polynomial construction procedure
) - . without having to go through root estimation procedures is pos-
For LP filters of ordem it is easily shown that the group deIaySible through the Root Moments of a given polynomial [25],
IS [26], or the differential cepstrum [27], [28].

whereH i, () is the MP part o (») andH,,,,x(») is the max-
imum phase part ol (z). The factorH, (»)contains all the roots
of H(z) that lie on the unit circle.

In general, the frequency domain characteristics of a filter

7(0) = n/2. lll. ROOT MOMENTS
Note that for filters of very large order, the group delay will take,. Definition of Root Moments
very large value. For exam_ple far= 1024 we haver, = 512. In relation to any polynomiak (=) = [T, ( — r:) defined
Some useful general pf)'”t_s need. 0 be_made. ... asin (1), Newton defined a set of paranziétlers that are functions
. For_a range of app_llca_tlons with s_trlngent sp_e<_:|f|ca_t|0n(§f the roots of the related polynomial, given by
as in telecommunications, a typical FIR digital filter

transfer function may be of order 200 or more. For such o . LA

filters the group delay may be undesirable particularly Spm=r1"+ry -+ = Z 7 (2)
when it approaches large values, when bidirectional =1
human-to-human communication is not viable. wherer; is theith root of (1). In [25], [26], it is proven analyt-

+ Often in many applications the phase response is eithga|ly that the roots of (1) are not needed explicitly to compute
unimportant or irrelevant. For example in some speeg) in that these parameters can be determined directly from the
processing areas it is not significant. This form of freedompefficientsh; through an iterative procedure. The parameters
in the deSign of the filters is not norma”y taken into Congm are known as theoot momentf the po|yn0mia|H(z)_
sideration by the existing FIR filter design methods.  They are related to many signal processing operations, domi-

At any rate, the design of MP FIR filters from LP FIR filtersnant amongst which is the differential cepstrum [28].
with specific amplitude requirements would inevitably lead to
a stage of factorization in order to select the appropriate zef®s Iterative Estimation of Root Moments

and hence problems with imprecisions would arise. By writing the polynomial (1) as a product of factors we can

We aim in this paper to derive the required nonlinear (m"\‘/\'/riteH’(z) =" (H(2)/(z—r;))and giventhaf (r;) = 0
imum) phase FIR filter transfer functions from correspondinge 4y =t ‘ ‘

LP functions that are assumed to be designable by the Reméz
exchange algorithm [5]. MATLAB provides a function called  H'(z) =nz"=* + (S; 4+ nh)z" 2

Remezfor the design of equiripple LP FIR filter transfer func- So 4 hiS Ro)z™ =3 1.
tions. The function requires as inputs the order of the filter (52 4 b1+ nha)z +

the type of the filter and the size of each band. In this study, the + (S + haSm—1 + haSm—z + -+ nhin)
LP filters used in the simulations are designed with the function ST
Remez

By direct differentiation of (1) we have

B. Given a LP Filter Design a MP Filter with the Same () = oL ho 2 fyat3
Amplitude Response: A Mathematical Description (2) =020 (n = Dha"" o+ (0 = 2)ho2

n—m—1
In principle, to obtain a MP version of the given transfer func- +oot (- m)hez oo (3)

tion we can follow the steps below. Hence by equating the last two expressions we obtain the fol-

1) Either determinef,,..x(2) and reflect its zeros into the jowing fundamental relationships known ldswton Identities
unit circle, or determindd ,,;;,(2) and make each of its

zeros of multiplicity 2. Sm + h1Sm_1 + hoSm_os+ -+ mhp_n,=0. (4)
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When the signal treated by this means is infinitely long, thEhis is evident from the fact
above equation is repeatedly used to calculate successive values

of the root moments. If the signal is of finite duration then for S
m>n

rn d7

27rJ

and the contribution to the integration are those due to those
S+ hSm—y + haSm—a 4+ hnSpp = 0. roots that lie withinl'.

We assume that the contallrcan be described using an an-
alytical expression.

In practice the contour integration will have to be effected
directly from the coefficients o (z) and this can be done quite
conveniently through the use of the DFT as it is shown below.
Equation (5) becomes far = p(6)ci?

The same relationship as above can be used to calctijafer
m < 0 by inserting successively values fotr equal ton —
1,n—2,n—3,...etc. It should be noted that,, for either
positive or negative values af are evaluated recursively from
the coefficients of (1) alone.
The above relationships also follow from the definition of the
differential cepstrum and are essentially included in [28]. How- r 1 /7 (mt1)6
everin [28]n is assumed to be finitepriori known. This is only m = 2mi ). 9(6)e do (6)
a minor point as the iteration in (4) do not requiréo be finite
and, hence, they can be applied to infinite duration signals.where
is sufficient at this juncture to observe that both finite duration H'(p(6)c®) ( dp(6)
signals and infinite duration signals of exponential entire func- g() = H{p(6)37) < 7 +jp(9)> P (). (1)
tion type interpretation can be treated in the same way [25]. To poIe
facilitate the exposition, the parameters in (2) are referred to@sscretization of (6) suitable for DFT use requires valdgs=
the root moments. This terminology emphasizes the deviati@@w/N)k, £ =0, 1, ..., N—1foranN-point transform. Note
from the differential cepstrum. that the value ofV has to be large enough in order to approxi-
Essentially one can interpret the set of equations (4) as a tramete sufficiently the integral by a summation and this is anissue
formation of the coefficient§h,.} to the parameter s€tS,,,}  for further investigation. Therefore, we have the inverse DFT
of the same cardinality. The transformations are one-to-one and

N-1

hence we can ha_ve the following e_xi_stence corollaries. ~ Z ej(m+1)ak 8)
Corollary 1: Given a set of coefficient§i,.} »r =1, ..., n, S iN

of thenth degree polynomial in (1), which has rodts; } ¢ =

1, ..., n, there exists a set of parametés,,} m =1, ..., n, Important Observation:If the contour of integration is the

So = n, given by (2). unit circle |z| = 1 then the resulting root moments from the
Corollary 2: Conversely given a set of root momeHts,,}  above, correspond to those of the MP component/6f). In

m =1,...,n,So = n there exists a set of coefficien{s,.} this case (8) is reduced to the form

r = 1,..., n, for a polynomial as in (1) determinable recur-

sively through (4). The proofs are self evident from the above GHmin(2) Z Hm+1)6s 9)

analysis. " N H

In our main problem we need the following result. Assume . - .
that the root moments of the polynomill (z) are S and  To compute either (8) or (9), it is observed thatoe: p(6)c"’
the root moments of the polynomill(z) areSi*) Thenthe W€ can write

root moments of the produéf (z) = Hy(2)Hs(z )areSH(‘) = ‘ ‘ n—1 ‘ -

Sar) 4 gl (), H'(p(8)e) = "D " (0 — i)hipm 7 (B)e
=0

C. Noniterative Estimation of Root Moments which foré = 6;, can be computed as

The Newton Identities yield the root moments of the entire ) i(n—1)6x N m—iet
polynomial, encompassing all the roots that lie within the com- £ (p(Br)e™) =< DFT{(n — 0)hip (6r) -
plex plane. However, it is often the case, that a specific factor (10)
of a given polynomialH (=) is required, such as the MP or the
maximum phase factor. In this case its root moments can be §ém
termined in a different manner, by using the Cauchy Residue H( 306y _ jnéy Cn—i

p(Or)e™) = " FDFET{h;p" " (61)} (11)
Theorem.

Let a closed contour defined as: = p(6)c?. It is assumed and hence

that we have no zeros dn

ilarly we have

DFT{(n — d)h;p" " "1(61)}

Then it follows from the Cauchy residue theorem that the root g(6,) =e3% ——
moments of the factor of the polynomial whose roots lie within DFT{hip"~*(01)}
I are given by dp(6 m

(" i) 7o)

_ o _ &
Ir(m) = S8, = 2ri Jr H(z) ~ ; ®) With N a power of 2 we can use the FFT algorithm.

m
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The error inSé{‘“i“(Z) n;y, due to the approximatiqn of
the integral by a summation, for two zeros locatecpati®,
0 < p < 1, is proven [29] to be equal to

1
M p2M B COS(ZJWd))
1+ p2? 1

6222—2

— 2 cos(2M )

and hence, the error due to an individual zero wilkhbe= /2.

As easily shown the error of the approximation tends to zero
as the number of points on the unit circle increase significantly.
When we approximate the above integral by a summation what
we obtain in practice is a real number which for= 0 we need
to round to the nearest integer. For this reason the total error,
i.e., the error which is due to the total number of zeros inside
the unit circle, should not be allowed to have an absolute value
larger than 0.5, otherwise the rounding operation would give a

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

1) We integrate around a circle centered at the origin and of

radius less than unity. With a careful choice of the contour
radius, the integration gives the root momesitém )
Sin(m) that correspond to that part of the original FIR
transfer function which has its zeros inside the unit circle,
namely the MP part.

Obviously the radius of the contour is of crucial impor-
tance. We have to ensure that the selected circle includes
all the roots of the MP part of the original polynomial.

2) Integrate around a circle centered at the origin and of ra-

dius greater than unity. Again the radius of the contour
must be selected carefully.

A good selection in step 1) yields a correspondingly
good selection in step 2), as the radius chosen in step 2),
is the reciprocal of the radius selected in step 1).

The integration produces the parametéidm) =

false result. If the number of zeros inside the unit circle;is
then the maximum acceptable ereqr,,. due to the contribution

in the summation of each one of the zeros within the circle can 3)

be found, therefore, from the following inequality:

0.5

NinEmax < 0.5 Or equivalentlye . < —.

m

D. Relationship Between the Coefficients of the Differential
Cepstrum and the Root Moments

The differential cepstrum was first proposed by Polydoros

and Fam [28].
For the coefficients of the differential cepstrumf =) the
notationd (m) is used, where

! H'(2)

m—1
= z dz
27§ Jjz1=1 H(2)

for anym # 1. Moreover form = 1 they do not definel; (1)

properly. Indeed they arbitrarily assign to it an overall dela

factor which may be associated with the given functibfx).
It is evident for our approach that

dia(m) = 1,

drr(m) = -8

—m ?

m > 2
m < 0.

Moreover it follows thatly (1) should be defined agy (1)
N, and not as given in [28].

Sin(m) + So(m) where S,(m) are the root moments
of that factor of the original FIR digital filter transfer
function which has its zeros on the unit circle.

The required transfer function has the root mo-
ments S(m) 28in(m) + S,(m), obtained as
S(m) = S1(m) + Sa(m).

From step 3) and from the Newton Identities we form the
required MP FIR transfer function. The order of this is the
same as the order of the original polynomial and equal to
51(0) + SQ(O)

4)

V. ESTIMATION OF THE RADII OF THE INTEGRATION

The radii of integration in the above algorithm must be chosen
so as to enclose the appropriate zeros of the given FIR digital
filter transfer function. Thus fof,(m) the radius of the inte-
gration contour must be such that > » > max(|rs|), while
for S2(m) the radius of the integration contoumust be chosen
such thatl < 7 < min(|reut|).

For equiripple piecewise constant filters the required radii can
e estimated as follows.

Let us remove the LP factor from the frequency response to
yield only a real function. This function now we shift vertically
halfway between its maximum and minimum values. Since the
initial transfer function is equiripple the result of these opera-
tions will be a real function of equiripple modulus almost ev-
erywhere, as shown in Fig. 1.

The ripple variation remains unchanged, namely a normal-

In this form a clear distinction is apparent between the maized response will vary betwedn+ ¢ and1 — ¢ almost every-

imum phase and MP componentsdf (m).

where except in the transition band.

After completing the theoretical background used in this sec-An approximate representation of this zero pattern almost ev-

tion we proceed to describe our approach to the problem.

IV. THE NEwW DESIGN ALGORITHM

The algorithm relies on the direct and accurate extraction

the appropriate factors from the FIR LP transfer functidf:)

needed to implemefit( =) described above. The FIR LP transfe
function is designed using the Reméz or any other similar s

erywhere, is given by

C(z)

12)

n n n 1
=(z"-a )<z —5>.
'?Le above transfer function is equiripple, LP and its zeros are
Irocated on two circles controlled by the parametelhe am-

litude characteristic is equiripple between the values

isting algorithm according to the specifications of the user. The Ox = a2 +2a" +1 and Oy = a” — 2a" + 1.

designed filter has roots on the unit circle and hence we cannot
obtain the MP part by integrating around the unit circle. The aphe mean between the minimum and the maximum value is
proach we take follows the steps below [30]—-[31]. (Crax + Cwmin)/2 = a®* + 1. To calculate the ripple, the
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Fig. 1. Real function of equiripple modulus almost everywhere.
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Fig. 2.  Amplitude response of a high-pass filter of order 128, designed by tp_e B
9.

Reméz algorithm. Mixed-phase zeros on the complex plane and radii of integration.

amplitude response is normalized, by dividing with the mes
(a®" + 1), so that the maximum value now becomes

1 28 EEB00GE;
2500 20
a** 420" +1 4857 o,

Cmax =
a’™ +1
We use the relationship 0.5
2n 2a™ 1 2
T e s B S S
a? +1 1

n -
a—i—an 0

The quantitys can be estimated from the initial transfer functior
created by the Reméz algorithm.

Hence we can estimate the radius of the circle on which t-0.5
zeros are expected to be located as

1/n | 3 2 2

s 52

a =

For small ripple width the above can approximated:te-
(2/8)1/. Fig. 4. Zeros of the reconstructed MP version filter.
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Fig. 5. Phase of the LP filter and of the reconstructed MP filter.
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Fig. 6. Group delay of the LP filter and the reconstructed MP filter.
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Fig. 8. Phase of the LP filter and of the reconstructed MP filter.

VI. EXPERIMENTAL RESULTS

First we tested our algorithm using a LP high pass FIR filter o1200
order 128. Thefilterwas obtained by MATLABRemefunction
(Fig. 2). The sampling frequency is 1028 and the passband gc1°°°
from 0.5r to «r. After applying our algorithm (Fig. 3) we notice

that the zeros outside the unit circle are inversed inside the ui 800f

circle (Fig. 4). The resulting MP filter has identical amplitude re-
sponse tothe one obtained using®emealgorithm. Its phaseis  so0
nonlinear (Fig. 5) but its group delay within the passband regio
is significantly lower compared to that of the LP filter (Fig. 6). .,
The algorithm was also applied to a LP low pass FIR filtel
of order 2048 (Fig. 7). The sampling frequency is 16 384 an
the passband goes from 0 to ©.4Once more the amplitude re-
sponses of both linear and MP filters are identical. Similarly tc
the previous example the phase of the resulted MP filterisnoi  ©
linear (Fig. 8). Its group delay in the passband-is approximately

200 fei

Linear phase FIR
\‘
Minimum phase FIR
4 Pass band
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

100 times lower than the one of the LP filter (Fig. 9). Fig. 9. Group delay of the LP filter and the reconstructed MP filter.
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VIlI. CONCLUSIONS [18]

In this paper we propose a novel approach to design a MP
FIR digital filter transfer function from a given LP FIR transfer [19]
function which has identical amplitude response. The theoret-
ical background of the proposed method relies on the root mdz0]
ments of a polynomial, a set of parameters that is describe
thoroughly throughout the paper. The algorithm presented in th
paper is also described in an analytical form with sufficient theo{22]
retical background to enable the reader to follow the arguments.
Appropriate proofs of assertions are also given wherever is nec-
essary. (23]

The LP systems obtained using the Reméz exchange aIg&—4]
rithm. We deal with filters with equiripple amplitude response.
We concentrate on very high degree polynomials (transfer fund25
tions) for which factorization procedures for root extraction areg)
unreliable. More specifically, our methods allow orders larger
than 2000 polynomial coefficients. [27]

(28]
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