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Equiripple Minimum Phase FIR Filter Design From
Linear Phase Systems Using Root Moments

Tania Stathaki and Ioannis Fotinopoulos

Abstract—In this brief we propose to design a minimum phase
finite-impulse response (FIR) digital filter transfer function from a
given equiripple linear phase FIR transfer function which has iden-
tical amplitude. The brief deals with two important issues. The first
issue is that we are concentrating on very high degree polynomials
for which factorization procedures for root extraction are unreli-
able. A novel approach is taken, that involves the use of a set of pa-
rameters called root moments of a polynomial, derivable directly
from the polynomial coefficients that immensely facilitate the fac-
torization of polynomials of very large order. The second issue is
that the polynomials we deal with have roots on the unit circle. In
the paper we propose a method to overcome this problem. The re-
sults of the proposed design scheme are very encouraging as far as
robustness and computational complexity are concerned.

Index Terms—Group delay, linear phase filters, minimum phase
filters, Reméz exchange algorithm, root moments.

I. INTRODUCTION

F inite-impulse response (FIR) digital filters have been
extensively studied in the past years for several reasons.

Among these are the properties of stability and high-speed
implementation using the fast Fourier transform (FFT) or other
number-theoretic transforms. Discussions of some of the most
popular design methods for FIR filters, and references to some
of the literature, are contained in [1]–[4]. We concentrate on
real FIR transfer functions and in this context we can classify
them into three main categories: 1) linear phase (LP), in which
all passband zeros are in conjugate reciprocal pairs around the
unit circle; 2) minimum phase (MP), where all passband zeros
are inside the unit circle; and 3) a general nonlinear, nonMP
category, where neither of the first two conditions hold.

However, most of the work done is concentrated on LP fil-
ters [2]. This may be due, in part, to the availability of efficient
FIR linear phase filter design algorithms which rely on the for-
mulation of optimization methods for the design of a desired
magnitude response [2]. For example, a class of optimization
methods for designing FIR filters [2] are based on the assump-
tion that the filter coefficients are symmetrical (or antisymmet-
rical) and this implies that the filter is LP as already mentioned.
The research efforts that have been devoted to the LP case have
resulted in powerful and efficient computer algorithms (e.g., the
widely used computer program by McClellanet al.[3]). In gen-
eral, we can say that design algorithms for the MP case tend to
be significantly more complicated than those for LP.
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The main advantage of LP filters is constant time delay over
the entire band. This is a useful property in certain applica-
tions such as data transmission, which requires a nondisper-
sive channel to avoid problems such as intersymbol interference
(ISI). The most popular existing method for the design of LP
FIR filters is the Reméz exchange algorithm [1], [2].

However, MP FIR filters are also known to have certain ad-
vantages. The MP filter exhibits a very significant saving in
group delay for high orders, compared with the LP equivalent.
It also exhibits reduced order for given gain specifications, and
lower coefficient sensitivity to quantization error, when com-
pared with the more common LP filters.

In this study we are focusing on applications where the LP
characteristic may not be necessary. In fact, the associated ex-
cess group delay for such filters may even be undesirable for
many applications. A representative example is in telecommu-
nications where long time delays increase the problems of echo
and singing on voice lines. The solution to achieving lower time
delay is the implementation of a MP design.

Another application is speech processing. The fact that in
speech channels phase dispersion is of less importance since the
ear is rather insensitive to phase distortion, is a very important
issue that stimulates efforts for MP FIR filter designs.

Therefore, a MP design in order to reduce group delay
through the filter is of fundamental importance.

There is a quite significant amount of work concerning the
design of MP FIR filters. Below we summarize the most repre-
sentative contributions in the area.

In 1976, Holtet al. [9] demonstrated how to use the Reméz
exchange algorithm [1] in order to approximate both amplitude
and phase response of a nonlinear phase filter. The amplitude
response performance of the resulting filter is somewhat worse
[10] than of optimal (i.e., minimal order) LP filters.

Herrmann and Schuessler [11] have presented a method of
transforming equiripple LP FIR filters into MP FIR filters with
half the degree and the same type of attenuation characteristics
in the modulus squared. Their technique has been extended by
Burris [12] to more general filter specifications. When this tech-
nique is used to transform multiband or nonequiripple filters,
the optimality of the filter is not necessarily maintained. More-
over, using this technique, it is difficult to imposea priori design
specifications such as the ratio of the passband and stopband
ripple of the resulting MP filter. Nevertheless for a given partic-
ular LP filter,a posteriori, the ratio and ripple of the MP filter,
which would result upon transformation, can be calculated.

An alternative approach for designing a MP filter was also
suggested by Burris [13], using the relation between gain and
phase response of MP filters. It appears that MP filters, designed
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using the last approach, need fewer coefficients than optimal LP
filters with the same gain response specifications. In his specific
example, when changing from the LP filter to the MP equivalent
the number of coefficients is reduced from 25 to 15, However,
Burris gives just one example, for a oneband shaping filter, in
which the response is not equiripple and thus may also be sub-
optimum.

In [14] a method is presented by Gilchrist, which can be used
for the direct design of MP FIR digital fillers with arbitrary
prescribed modulus-squared characteristics. This method uses
the Fletcher-Powell optimization technique to minimize an
norm to obtain a nonnegative polynomial fit to the desired char-
acteristics in a transformed domain. The coefficients of the filter
are then obtained from the zeros of this polynomial obtained
through normal factorization processes. Examples of low-pass
and band-pass filter designs are given using an norm. A
comparison of the passband and stopband ripples and their ratio
is made with LP filter designs. However, Gilchrist shows that an
equiripple MP filter and a LP filter designed using the Reméz
exchange algorithm, with the same order and frequency band
edges, have the same deviations. Hence the Gilchrist solution,
although equiripple, cannot be optimum.

In [15] Foxalet al.compare the calculated and measured re-
sponse of a MP CCD low-pass transversal filter with that for a
LP design with the same magnitude characteristics. It is shown
that the MP design can offer up to an order of magnitude im-
provement in group delay, and is also less sensitive to transfer
inefficiency and tap-weight error than the LP design. The two
approaches, linear and MP design are compared on the basis of
group delay and sensitivity to change transfer inefficiency and
coefficient error.

In [16], Goldberget al. discuss some aspects of a design
method similar to the one proposed by Herrmanet al.[11]. First,
the prototype LP filter is designed using more efficient design
methods than the one used in [11]. Then, a discussion is given on
the problem of defining the specifications on the prototype LP
filter. Next, the performance of the resulting NLP filter is theo-
retically and practically compared to that of the optimal (min-
imal order) LP filter. Finally, some practical limitations in using
the proposed design method are brought up, and an alternative
design method is proposed in order to avoid these limitations.
However only MP filters are obtainable and a factorization pro-
cedure is required.

In [17] a procedure for circumventing the difficult problem
of locating the roots of a (generally) high-order polynomial ac-
curately is proposed by Mian and Nainer. This is based on the
work presented in [18] by Schmidt and Rabiner. To this pur-
pose, it is shown that the use of a basic property of the complex
cepstrum reduces the factorization problem (or, equivalently in
the time domain, the deconvolution problem) essentially to the
computation of two FFT’s. Examples are given which illustrate
the proposed procedure. The authors are inspired from the work
done in [19], where it is necessary to solve for the roots of a
mirror-image polynomial and to factorize them suitably, in order
to obtain the MP counterpart. The algorithm demands 1) a LP
prototype; 2) the determination of the zeros’ configuration of
that prototype; and 3) the remapping of the zeros, using a nu-
merical search technique to achieve an optimum MP filter.

In [20] Chit and Mason proposed a new adaptive design algo-
rithm, extending earlier work of the same authors on optimum
LP filters witha priori constrained (anti)symmetric impulse re-
sponses [21].

In [22] (a study by Rasmussen and Etter following the work
done in [23], [24]), the design algorithm requires a gain spec-
ification in a manner identical to the LP case. Conditions for
optimality are investigated in terms of the zeros’ configuration,
equiripple characteristics, minimax and LMS criteria. The re-
sult is a very flexible MP FIR filter design technique, with the
potential to accommodate a number of different filter structures
and types. In [22] the authors treat the MP FIR estimate of an
unknown system as a constrained optimization problem in the
sense that the zeros of the model must be constrained to be
within the unit circle. The authors compare several structures
for adaptively obtaining the optimum FIR MP filter model for
an unknown FIR system.

In our proposed method a new approach for polynomial fac-
torization without root finding is attempted. The approach taken
involves the use of the Cauchy Residue Theorem applied to
the contour integral of the logarithmic derivative of the transfer
function around appropriate curves. This leads into a set of pa-
rameters, the root moments, derivable directly from the poly-
nomial coefficients that facilitate the factorization problem. In
addition, the results of the proposed design scheme are very en-
couraging as far as robustness and computational complexity
are concerned.

II. BACKGROUND

A. LP FIR Filter Transfer Functions

We consider a LP real FIR digital filter transfer function
having the following form:

(1)

It can be proven [1], that an FIR filter has LP if its unit sample
response satisfies the symmetry or the anti-symmetry condition
shown below

In that case, the impulse response is called symmetric if the “”
holds or anti-symmetric otherwise. The above condition implies
[1] that if a given LP FIR filter transfer function has a zero at
the location , it will also have zeros at locations , and

for .
Let us suppose that the roots of the polynomial are de-

noted by as in (1).
We employ the following notation:

• if the root is inside the unit circle.
• if the root is outside the unit circle.
• if the root is on the unit circle.

Thus, we can write
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or

where is the MP part of and is the max-
imum phase part of . The factor contains all the roots
of that lie on the unit circle.

In general, the frequency domain characteristics of a filter

are described in terms of both gain and phase . The
gain is always specified explicitly and approximated in any prac-
tical scheme, whereas the phase depends on its type, i.e., LP, MP
or NMP. The group delay of a filter, , is defined as follows:

For LP filters of order it is easily shown that the group delay
is

Note that for filters of very large order, the group delay will take
very large value. For example for we have .

Some useful general points need to be made.

• For a range of applications with stringent specifications
as in telecommunications, a typical FIR digital filter
transfer function may be of order 200 or more. For such
filters the group delay may be undesirable particularly
when it approaches large values, when bidirectional
human-to-human communication is not viable.

• Often in many applications the phase response is either
unimportant or irrelevant. For example in some speech
processing areas it is not significant. This form of freedom
in the design of the filters is not normally taken into con-
sideration by the existing FIR filter design methods.

At any rate, the design of MP FIR filters from LP FIR filters
with specific amplitude requirements would inevitably lead to
a stage of factorization in order to select the appropriate zeros
and hence problems with imprecisions would arise.

We aim in this paper to derive the required nonlinear (min-
imum) phase FIR filter transfer functions from corresponding
LP functions that are assumed to be designable by the Reméz
exchange algorithm [5]. MATLAB provides a function called
Remez, for the design of equiripple LP FIR filter transfer func-
tions. The function requires as inputs the order of the filter,
the type of the filter and the size of each band. In this study, the
LP filters used in the simulations are designed with the function
Remez.

B. Given a LP Filter Design a MP Filter with the Same
Amplitude Response: A Mathematical Description

In principle, to obtain a MP version of the given transfer func-
tion we can follow the steps below.

1) Either determine and reflect its zeros into the
unit circle, or determine and make each of its
zeros of multiplicity 2.

2) Find .
3) Construct the transfer function as

.
Then we shall have .

Both step 1) and step 2) imply at first glance that a root finding
procedure may be required. However, as already pointed out,
root finding procedures are known to be inaccurate and unre-
liable for large order polynomials. Factorization without root
finding forms also the basis of the procedure developed in [7],
[8], and [17]. In [7] and [17] use is made of the real cepstral pa-
rameters, where the cepstral aliasing problem is recognized and
careful procedures are recommended to reduce its effects. In [8]
they approach the factorization problem from the Lagrange in-
terpolation point of view. In the above procedures it is assumed
that the zeros of the transfer function on the unit circle area
priori known. We make no such assumption in our present work.

An alternative and direct polynomial construction procedure
without having to go through root estimation procedures is pos-
sible through the Root Moments of a given polynomial [25],
[26], or the differential cepstrum [27], [28].

III. ROOT MOMENTS

A. Definition of Root Moments

In relation to any polynomial defined
as in (1), Newton defined a set of parameters that are functions
of the roots of the related polynomial, given by

(2)

where is the th root of (1). In [25], [26], it is proven analyt-
ically that the roots of (1) are not needed explicitly to compute

in that these parameters can be determined directly from the
coefficients through an iterative procedure. The parameters

are known as theroot momentsof the polynomial .
They are related to many signal processing operations, domi-
nant amongst which is the differential cepstrum [28].

B. Iterative Estimation of Root Moments

By writing the polynomial (1) as a product of factors we can
write and given that
we have

By direct differentiation of (1) we have

(3)

Hence by equating the last two expressions we obtain the fol-
lowing fundamental relationships known asNewton Identities:

(4)
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When the signal treated by this means is infinitely long, the
above equation is repeatedly used to calculate successive values
of the root moments. If the signal is of finite duration then for

The same relationship as above can be used to calculatefor
by inserting successively values for equal to

etc. It should be noted that for either
positive or negative values of are evaluated recursively from
the coefficients of (1) alone.

The above relationships also follow from the definition of the
differential cepstrum and are essentially included in [28]. How-
ever in [28] is assumed to be finitea priori known. This is only
a minor point as the iteration in (4) do not requireto be finite
and, hence, they can be applied to infinite duration signals. It
is sufficient at this juncture to observe that both finite duration
signals and infinite duration signals of exponential entire func-
tion type interpretation can be treated in the same way [25]. To
facilitate the exposition, the parameters in (2) are referred to as
the root moments. This terminology emphasizes the deviation
from the differential cepstrum.

Essentially one can interpret the set of equations (4) as a trans-
formation of the coefficients to the parameter set
of the same cardinality. The transformations are one-to-one and
hence we can have the following existence corollaries.

Corollary 1: Given a set of coefficients ,
of the th degree polynomial in (1), which has roots

, there exists a set of parameters ,
, given by (2).

Corollary 2: Conversely given a set of root moments
, there exists a set of coefficients
, for a polynomial as in (1) determinable recur-

sively through (4). The proofs are self evident from the above
analysis.

In our main problem we need the following result. Assume
that the root moments of the polynomial are and
the root moments of the polynomial are . Then the
root moments of the product are

.

C. Noniterative Estimation of Root Moments

The Newton Identities yield the root moments of the entire
polynomial, encompassing all the roots that lie within the com-
plex plane. However, it is often the case, that a specific factor
of a given polynomial is required, such as the MP or the
maximum phase factor. In this case its root moments can be de-
termined in a different manner, by using the Cauchy Residue
Theorem.

Let a closed contour defined as . It is assumed
that we have no zeros on.

Then it follows from the Cauchy residue theorem that the root
moments of the factor of the polynomial whose roots lie within

are given by

(5)

This is evident from the fact

and the contribution to the integration are those due to those
roots that lie within .

We assume that the contourcan be described using an an-
alytical expression.

In practice the contour integration will have to be effected
directly from the coefficients of and this can be done quite
conveniently through the use of the DFT as it is shown below.

Equation (5) becomes for

(6)

where

(7)

Discretization of (6) suitable for DFT use requires values
for an -point transform. Note

that the value of has to be large enough in order to approxi-
mate sufficiently the integral by a summation and this is an issue
for further investigation. Therefore, we have the inverse DFT

(8)

Important Observation:If the contour of integration is the
unit circle then the resulting root moments from the
above, correspond to those of the MP component of . In
this case (8) is reduced to the form

(9)

To compute either (8) or (9), it is observed that on
we can write

which for can be computed as

DFT

(10)

Similarly we have

DFT (11)

and hence

DFT
DFT

With a power of 2 we can use the FFT algorithm.
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The error in due to the approximation of
the integral by a summation, for two zeros located at ,

, is proven [29] to be equal to

and hence, the error due to an individual zero will be .
As easily shown the error of the approximation tends to zero

as the number of points on the unit circle increase significantly.
When we approximate the above integral by a summation what
we obtain in practice is a real number which for we need
to round to the nearest integer. For this reason the total error,
i.e., the error which is due to the total number of zeros inside
the unit circle, should not be allowed to have an absolute value
larger than 0.5, otherwise the rounding operation would give a
false result. If the number of zeros inside the unit circle is,
then the maximum acceptable error due to the contribution
in the summation of each one of the zeros within the circle can
be found, therefore, from the following inequality:

or equivalently

D. Relationship Between the Coefficients of the Differential
Cepstrum and the Root Moments

The differential cepstrum was first proposed by Polydoros
and Fam [28].

For the coefficients of the differential cepstrum of the
notation is used, where

for any . Moreover for they do not define
properly. Indeed they arbitrarily assign to it an overall delay
factor which may be associated with the given function .

It is evident for our approach that

Moreover it follows that should be defined as
and not as given in [28].

In this form a clear distinction is apparent between the max-
imum phase and MP components of .

After completing the theoretical background used in this sec-
tion we proceed to describe our approach to the problem.

IV. THE NEW DESIGN ALGORITHM

The algorithm relies on the direct and accurate extraction of
the appropriate factors from the FIR LP transfer function
needed to implement described above. The FIR LP transfer
function is designed using the Reméz or any other similar ex-
isting algorithm according to the specifications of the user. The
designed filter has roots on the unit circle and hence we cannot
obtain the MP part by integrating around the unit circle. The ap-
proach we take follows the steps below [30]–[31].

1) We integrate around a circle centered at the origin and of
radius less than unity. With a careful choice of the contour
radius, the integration gives the root moments

that correspond to that part of the original FIR
transfer function which has its zeros inside the unit circle,
namely the MP part.

Obviously the radius of the contour is of crucial impor-
tance. We have to ensure that the selected circle includes
all the roots of the MP part of the original polynomial.

2) Integrate around a circle centered at the origin and of ra-
dius greater than unity. Again the radius of the contour
must be selected carefully.

A good selection in step 1) yields a correspondingly
good selection in step 2), as the radius chosen in step 2),
is the reciprocal of the radius selected in step 1).

The integration produces the parameters
where are the root moments

of that factor of the original FIR digital filter transfer
function which has its zeros on the unit circle.

3) The required transfer function has the root mo-
ments , obtained as

.
4) From step 3) and from the Newton Identities we form the

required MP FIR transfer function. The order of this is the
same as the order of the original polynomial and equal to

.

V. ESTIMATION OF THE RADII OF THE INTEGRATION

The radii of integration in the above algorithm must be chosen
so as to enclose the appropriate zeros of the given FIR digital
filter transfer function. Thus for the radius of the inte-
gration contour must be such that , while
for the radius of the integration contourmust be chosen
such that .

For equiripple piecewise constant filters the required radii can
be estimated as follows.

Let us remove the LP factor from the frequency response to
yield only a real function. This function now we shift vertically
halfway between its maximum and minimum values. Since the
initial transfer function is equiripple the result of these opera-
tions will be a real function of equiripple modulus almost ev-
erywhere, as shown in Fig. 1.

The ripple variation remains unchanged, namely a normal-
ized response will vary between and almost every-
where except in the transition band.

An approximate representation of this zero pattern almost ev-
erywhere, is given by

(12)

The above transfer function is equiripple, LP and its zeros are
located on two circles controlled by the parameter. The am-
plitude characteristic is equiripple between the values

and

The mean between the minimum and the maximum value is
. To calculate the ripple, the
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Fig. 1. Real function of equiripple modulus almost everywhere.

Fig. 2. Amplitude response of a high-pass filter of order 128, designed by the
Reméz algorithm.

amplitude response is normalized, by dividing with the mean
, so that the maximum value now becomes

We use the relationship

The quantity can be estimated from the initial transfer function
created by the Reméz algorithm.

Hence we can estimate the radius of the circle on which the
zeros are expected to be located as

For small ripple width the above can approximated to
.

Fig. 3. Mixed-phase zeros on the complex plane and radii of integration.

Fig. 4. Zeros of the reconstructed MP version filter.
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Fig. 5. Phase of the LP filter and of the reconstructed MP filter.

Fig. 6. Group delay of the LP filter and the reconstructed MP filter.

VI. EXPERIMENTAL RESULTS

First we tested our algorithm using a LP high pass FIR filter of
order128.ThefilterwasobtainedbyMATLAB’sRemezfunction
(Fig. 2). The sampling frequency is 1028 and the passband goes
from 0.5 to . After applying our algorithm (Fig. 3) we notice
that the zeros outside the unit circle are inversed inside the unit
circle (Fig. 4). The resulting MP filter has identical amplitude re-
sponse to the oneobtained using theRemezalgorithm. Itsphase is
nonlinear (Fig. 5) but its group delay within the passband region
is significantly lower compared to that of the LP filter (Fig. 6).

The algorithm was also applied to a LP low pass FIR filter
of order 2048 (Fig. 7). The sampling frequency is 16 384 and
the passband goes from 0 to 0.4. Once more the amplitude re-
sponses of both linear and MP filters are identical. Similarly to
the previous example the phase of the resulted MP filter is non-
linear (Fig. 8). Its group delay in the passband-is approximately
100 times lower than the one of the LP filter (Fig. 9).

Fig. 7. Amplitude response of a low-pass filter of order 2048, designed by the
Reméz algorithm.

Fig. 8. Phase of the LP filter and of the reconstructed MP filter.

Fig. 9. Group delay of the LP filter and the reconstructed MP filter.
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VII. CONCLUSIONS

In this paper we propose a novel approach to design a MP
FIR digital filter transfer function from a given LP FIR transfer
function which has identical amplitude response. The theoret-
ical background of the proposed method relies on the root mo-
ments of a polynomial, a set of parameters that is described
thoroughly throughout the paper. The algorithm presented in the
paper is also described in an analytical form with sufficient theo-
retical background to enable the reader to follow the arguments.
Appropriate proofs of assertions are also given wherever is nec-
essary.

The LP systems obtained using the Reméz exchange algo-
rithm. We deal with filters with equiripple amplitude response.
We concentrate on very high degree polynomials (transfer func-
tions) for which factorization procedures for root extraction are
unreliable. More specifically, our methods allow orders larger
than 2000 polynomial coefficients.
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