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Abstract

The cancellation of echoes is a vital component of telephony networks. In some cases the echo response that must be
identified by the echo canceller is sparse, as for example when telephony traffic is routed over networks with unknown
delay such as packet-switched networks. The sparse nature of such a response causes standard adaptive algorithms
including normalized LMS to perform poorly. This paper begins by providing a review of techniques that aim to give
improved echo cancellation performance when the echo response is sparse. In addition, adaptive filters can also be
designed to exploit sparseness in the input signal by using partial update procedures. This concept is discussed and the
MMax procedure is reviewed. We proceed to present a new high performance sparse adaptive algorithm and provide
comparative echo cancellation results to show the relative performance of the existing and new algorithms. Finally, an
efficient low cost implementation of our new algorithm using partial update adaptation is presented and evaluated. This
algorithm exploits both sparseness of the echo response and also sparseness of the input signal in order to achieve high

performance without high computational cost.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive system identification is a challenging
problem especially when the system impulse re-
sponse is sparse. In this paper, we consider an
impulse response or input signal to be ‘sparse’ if a
large fraction of its energy is concentrated in a small
fraction of its duration. We refer to the degree of
sparseness as a qualitative measure ranging from
strongly dispersive to strongly sparse.

One of the important applications of adaptive
system identification is the cancellation of echoes in
telephony networks as depicted in Fig. 1 in which,
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for discrete-time index n, x(n) is the input signal,
e(n) is the returned echo signal, hop(n) is the echo
path impulse response, h(n) is the adaptive filter’s
impulse response of length L and x(n) = [x(n), x(n —
1),...,x(n— L+ D]" is a vector of input samples.
This application has been the subject of much
research in recent years. The echo responses that
must be identified by such an echo canceller can
have sparse characteristics, for example, if echo
arises from reflections at the hybrid transformer in
telephony networks with unknown delay. The
advent of packet-switched telephony has led to a
need for the integration of older analog ‘plain old
telephone systems’ (POTS) with modern IP or ATM
packet-switch networks. Network gateway products
address this need by facilitating the interconnection
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Fig. 1. Adaptive echo cancellation structure.
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Fig. 2. An example of a sparse impulse response.

of various networks and providing appropriate echo
cancellers. In such systems, the hybrid echo
response will be subject to an unpredictable bulk
delay because propagation delays in the network are
unknown and depend on several factors including
network loading, quality of service constraints and
jitter-buffer configuration. The overall effect is
therefore that an ‘active’ region associated with
the true hybrid echo response will be located with an
unknown delay within an overall response window
that has to be sufficiently long to accommodate the
worst case bulk delay. Fig. 2 shows an example of a
sparse system with an overall response window of
128 ms duration with an active region containing a
hybrid response of 12ms duration. State-of-the-art
network gateway echo cancellers are typically
designed to cancel up to three independently

delayed hybrid echo responses, each of up to
16 ms duration, within an overall window of
128 ms. Such multi-hybrid responses occur in
multi-party conference calls. Although our main
focus in this paper will be on the single hybrid case,
many of the principles apply also to multi-hybrid
responses. It has been shown [1] that direct
application of normalized LMS (NLMS) [2] echo
cancellation in the context of G.168 [3] testing gives
unsatisfactory performance when the echo response
is sparse. The causes of poor performance include (i)
the requirement to adapt a relatively long filter,
typically 128 ms corresponding to 1024 coefficients
for narrow-band speech with a sampling frequency
of 8kHz, and (ii) the coefficient noise that will
unavoidably occur during adaptation for the near-
zero-valued coefficients in the inactive regions.

In hands-free telephones and desktop conferen-
cing systems, control of echo due to acoustic
coupling from the loudspeaker to the microphone
is a key requirement [4]. The echo response due to
the loudspeaker-room-microphone system can often
be considered sparse because of the bulk delay
corresponding to the direct path propagation delay
from loudspeaker to microphone. Depending on the
application, this direct path bulk delay may be
predictable as in the case of a telephone handset, or
unpredictable as in the case of a desktop conferen-
cing system with physically separate loudspeakers
and microphones. The length of the acoustic echo
response in a typical teleconferencing room is in the
region of 100 to 400 ms and hence adaptive filters
employing 1024 taps or more are typically required
in order to achieve adequate levels of echo
cancellation [5]. The requirement for long adaptive
filters together with the presence of near-zero-
valued coefficients during the bulk delay region
means that significant performance benefits can
often be obtained by applying sparse echo cancella-
tion methods to acoustic echo cancellation applica-
tions. Other examples which require the
identification of sparse impulse responses include
certain types of source localization and the control
of feedback in sound reinforcement and hearing aid
applications.

In addition to consideration of sparse echo
responses, adaptive filters can also be designed to
exploit sparseness in the input signal. This second
type of sparseness can be usefully exploited when
processing speech signals which can be considered
to exhibit a degree of sparseness since many of the
sample amplitudes are close to zero, for example



._.
=
0
~

10001

-1000 M

Speech Amplitude
o

Normalized Energy
\\

0 0.2 0.4 0.6 0.8 1
Fraction of Frame Duration

Fig. 3. Illustration of sparseness in a sentence of male speech.

during speech pauses and plosive phonemes. This is
illustrated in Fig. 3 which shows, for a typical
sentence of male speech analyzed using a frame
duration of 128 ms, that 50% of the speech energy is
contained within 16% of the frame duration. Partial
update adaptive filters can be deployed to exploit
this type of sparseness with the aim of reducing
computational complexity. Since the magnitudes of
tap-updates in LMS-based adaptive filters are
proportional to the input sample magnitudes, the
tap-updates for near-zero taps will be commensu-
rately small and have little effect on reducing the
error. By updating only those taps that will have
the greatest effect in reducing the output error, the
computations relating to the non-updated taps are
saved. Early work on this topic appeared in [6] and
subsequently the MMaxNLMS algorithm was
reported in [7]. Several other approaches employing
partial update adaptive filtering have been proposed
including block-based methods [8] and multi-chan-
nel techniques [9].

Having now identified two types of sparseness—
sparseness in the echo response and sparseness in
the input signal—we will first discuss techniques
designed to exploit them individually. In Section 2,
we will review the technique of proportionate
updating in adaptive filters and give examples of
several algorithms from the literature; algorithms
employing partial updating will be discussed in
Section 3. Secondly, we will present a new modified
technique for proportionate updating with im-
proved performance in Section 4. Thirdly, we will
combine the underlying concepts of proportionate
updating and partial updating and, using our
modified proportionate scheme, develop the effi-
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cient partial update improved proportionate NLMS
algorithm (PIPNLMS). Comparative simulation
results will be presented in Section 5 whereafter
conclusions will be drawn.

2. Proportionate update adaptive filters

In gradient descent and stochastic gradient
adaptive algorithms, an objective function is mini-
mized iteratively by adjusting the parameter vector
in the direction of the negative error-gradient, or its
estimate. The magnitude of the adjustment is
regulated by the step-size (or adaptive gain) para-
meter. The particular feature of proportionate
updating is that the effective value of the step-size
is determined for each coefficient in a manner
dependent on the magnitude of the coefficient. The
concept of proportionate updating can be supported
intuitively by considering a system identification
example in which some tap coefficients are close to
zero whilst others are relatively large in magnitude,
such as in the example of Fig. 2. By employing a
step-size proportional to each coefficient magnitude,
those coefficients with the greatest magnitude will
be adapted with high adaptation gain causing them
to converge quickly. This fast convergence of the
large magnitude coefficients gives excellent perfor-
mance in initial convergence since errors in these
coefficients will contribute in greater proportion to
the overall error than errors in the small magnitude
coefficients.

2.1. Proportionate normalized LMS

The concept of proportionate updating of the
NLMS algorithm was originally introduced for
echo cancellation applications by Duttweiler in a
Bell Laboratories internal technical memo and
subsequently in [10]. The underlying principle of
PNLMS is to adapt each coefficient with an
adaptation gain proportional to its own magnitude
as shown in (1)—(6). At initialization of the adaptive
filter h(n) = 0, the error contributions due to the
coefficients in the active region are most dominant.
In subsequent iterations, PNLMS updating applies
accordingly high adaptation gain to these coeffi-
cients, causing them to converge quickly, thereby
obtaining a fast initial reduction in error. A low
adaptation gain is applied by PNLMS to the
coefficients in the inactive regions, because
of their low amplitude, in order that the final
misadjustment of the proportionate scheme is no
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worse than comparable non-proportionate schemes.
With reference to Fig. 1, the PNLMS algorithm is
given by

L—1
e(n) =d(n) — Z hy(n)x(n — 1), (1)
=0
Vmin(n) = pmax{5p9 |h0(7’l)|, |h1(n)|s SR |hL71(n)|}y
2
Vl(n) = max{ymin(n)a |h/(l’l)|}, 0<Z<La (3)
(1)
D VY 4
9 = DY @
G(n) = diag{go(n),...,g9;_1(n)}, ®)
h(1 + 1) = h(n) + —CXDn) ©6)

xT(n)x(n) + opnims

where dpnpMs is the regularization constant, L is the
length of the adaptive filter and diag{c,...,c.—1} is
a diagonal matrix with elements {cy,...,cz_1}.
Typical values for the algorithm constants are given
as 0, = 0.01 and p = 5/L. An important modifica-
tion to this algorithm is made in [11] and [12] in
which (6) is rewritten as

HG()x(n)e(n)
xT(mG(n)x(n) + dpnLms

This improves the behavior of the algorithm
particularly during initial convergence by scaling
the denominator term to balance the proportionate
scaling applied in the numerator. The effect of this
modification is more significant when the coeffi-
cients |/;(n)], 0</< L are far from unity.

h(n+ 1) = h(n) + (7)

2.2. PNLMS++

Although the initial convergence of PNLMS is
faster than NLMS when the echo response to be
identified is sparse, convergence can be worse than
NLMS when the response is more dispersive, in
which case the proportionate adaptation gain
control of PNLMS is not appropriate [12]. Further-
more, for time-varying systems, it can be seen that
PNLMS will perform poorly if the trajectory of a
coefficient is required to track through or close to
zero since the adaptation gain for that coefficient
will become inappropriately small. In [13], it was
shown that alternating the coefficient update
between PNLMS and NLMS gave similar perfor-
mance to PNLMS for sparse systems but with better

robustness in particular to echo path change. The
resulting algorithm, known as PNLMS++, can be
used with various switching schemes and good
results have been presented when PNLMS and
NLMS are used alternately at odd and even sample
instants n, respectively.

2.3. IPNLMS

The advantage of proportionate update adaptive
filters for sparse echo response identification has
been clearly established in the literature [10,13]. The
benefits of proportionate updating increase with the
sparseness of the system and reduce as the unknown
system becomes more diffuse. At some degree of
diffuseness, proportionate updating begins to de-
grade performance compared to non-proportionate
adaptation. In the search for an adaptation rule
which gives performance always better than NLMS
and PNLMS, regardless of whether the unknown
systems is sparse or dispersive, Benesty and Gay
have proposed improved PNLMS (IPNLMS) [12].
This improved algorithm employs a combination of
proportionate and non-proportionate updating and
therefore has a similar underlying rationale to
PNLMS + 4. However, in IPNLMS the propor-
tionate and non-proportionate adaptation steps are
merged so that a mixture of both is performed every
iteration as shown in (8)—(10). The relative weight-
ing of proportionate and non-proportionate adap-
tation at each iteration is controlled by a parameter
o in the range 1. Values of —0.5 or 0 are typically
used, thereby giving equal or somewhat lower
weight to the proportionate component of adapta-
tion compared to the non-proportionate compo-
nent. The IPNLMS algorithm employs an
adaptation scheme given by

-4 i)
kun) = =+ (1+ ) 2l + ¢
[=0.1,....L—1, @)
K(n) = diag{ko(n), ..., kr_1(n)}, ©)
pK(n)x(n)e(n)

h(n + 1) = h(n) + (10)

xT(n)K(n)x(n) + dipNLms
where drpnLms 1S the regularization parameter and &
is a small positive constant to avoid division by
zero. In the test we have performed in Section 5 and
in the results shown in [12], the IPNLMS algorithm
consistently performs better than both NLMS and
PNLMS using the form of (7). In [14], it has been
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shown that PNLMS using the form of (6) can
outperform IPNLMS during the initial stages of
convergence but at the expense of slower conver-
gence thereafter.

2.4. Exponentiated gradient

The concept underpinning exponentiated gradi-
ent algorithms was employed in [15] to develop the
EG= algorithm. In [16] it was subsequently shown
that algorithms of this class can be effectively
applied to sparse system identification and are
closely related to proportionate update algorithms.

The family of exponentiated gradient algorithms
is derived in [16] by considering the minimization of
a cost function (after [17])

Jh(n + 1)] = D[h(n + 1), h(n)] + n*(n + 1), (11)

where ¢ is the a posteriori error, the operator D[] is
some measure of distance and the positive constant
n controls the relative weighting of ‘correctiveness’
compared to ‘conservativeness’ and is analogous to
the step-size in LMS. The exponentiated gradient
algorithm is obtained from (11) by choosing D[] as
the Kullback—Leibler divergence given by

Dgr[h(n + 1), h(n)]

& hi(n+ 1)
= 1; hi(n+ 1)log (Tn)) (12)

In order to operate correctly with both positive and
negative coefficients, as shown in [18], it is necessary
to write

h(n) = h™(n) —h~(n), (13)

where h™ and h™ contain only positive coefficients.

The concept of exponentiated gradient adapta-
tion can be seen by considering, for example, the
exponentiated gradient algorithm with unnorma-
lized weights (EGU=) which is given in [15,19,16] as

e(n) = d(n)/p — " (n) — h™ ()] x(n), (14)
I+ 1) = by (myet =D, (15)
hy (n+ 1) = hy (n)e™#>0=De, (16)

where f is a non-zero constant reflecting the
unnormalized nature of this algorithm and u
controls the learning rate. It can be seen that the
term corresponding to the gradient estimate in LMS
appears here exponentiated and therefore this

algorithm is equivalent to using LMS updating on
the logarithm of the coefficients.

An interesting relationship has been highlighted
in [16] between the exponentiated gradient algo-
rithms and proportionate update algorithms. Con-
sider the EG= algorithm shown in (17)—(21)

e(n) = d(n)/p — [*(n) — h™ ()] x(n), 17)
rf(n) = exp [’%ﬁ x(n — l)e(n)] , (18)
ri(n) = 1/rf (n), (19)
hHn+ 1) = uhi G} () (20)

SE [ (it () + B (yry ()]

uhy (n)ry (n)
S0 U (0 () + Iy (yry ()]

for/=0,1,...,L — 1 with parameters u> |lhoy /S
where hgp are the coefficients of the true echo
response and u” controls the learning rate. For u”
sufficiently small, the approximation exp(¢) ~ 1 +
¢ can be used to write the approximations [16]

hy(n+1)= (21)

rm~1 +%ﬁ x(n — De(n), (22)

"

170~ 1= 30— Den), 23)

L-1
> @y () + by (o ()]
j=0

v

~u4+ % y(n)e(n) ~ u. (24)

The update Egs. (20) and (21) can be combined and,
using these approximations, written as

hn+1)=hf(n+1)—h (n+1)
hf (n) + hy (n)
W)l + [Ih~ ()l
xx(n — e(n). (25)

In this case, it can be seen that the term u”((h; (n) +
hy (m)/(Ih*@)|l; + [h™(n)]|;)) in EG+ has the same
effect as the terms k() in the IPNLMS update (10).
Whereas the relative weighting between propor-
tionate and non-proportionate adaptation in
IPNLMS is controlled by «, in EG# it is controlled
by u. Hence, for small y’, IPNLMS is a good
approximation of the EG= algorithm. When
comparing IPNLMS and EG= for practical appli-

= hy(n) + 1’
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cations, IPNLMS would normally be preferred
since it requires no a priori knowledge of hop and
has lower computational complexity.

3. Partial update adaptive filters

It can be advantageous from the point of view of
computational complexity to employ adaptive filters
that update only a selected subset of size M, out of a
total of L, coefficients at each iteration. Various
techniques have been proposed in the literature
which differ in the criteria used for selecting
coefficients for updating. A particularly effective
technique is the MMaxNLMS algorithm [7] that
updates only M coefficients for which the corre-
sponding elements of the tap-input vector x(n) are
among the M largest in magnitude. This results in a
computational saving of L-M updates, although
the cost of the convolution required to compute the
output error remains unchanged. The computa-
tional overhead in identifying the M largest
elements of x(n) can be kept relatively small by
employing a fast sort algorithm [20] or an efficient
approximate sort technique [21].

The update employed in MMaxNLMS is defined
as

px(n)e(n)
Ix(m)* ~
where Q(n) = diag{q(n)} is a diagonal matrix

formed from the elements of q(r) and the /th
element of q(n) is determined as

h(n + 1) = h(n) + Q(n) (26)

I, |x;(n)] € M maxima of |x(n)|, .
(n) = 0, otherwise, 27
for/=0,1,...,L — 1.

In [22], the sparse partial update NLMS algo-
rithm is developed (SPNLMS) in which the concept
embodied in (26) and (27) is modified so that the tap
selection criterion considers the product of the tap-
input sample and the tap coefficient. In this case the
tap-selection criterion is

I, |x/(n)h(n)] € M maxima of
1x(n) © h(n)], (28)
0, otherwise,

q,(n) =

for 1=0,1,...,L—1 where © represents the
element-by-element vector product. To simplify
the control of this algorithm and avoid any
problems when h(rn) =0, the authors propose
switching from (28) to (27) for 1 in T iterations.

Although the SPNLMS algorithm does not
employ proportionate updating, it does exploit
sparseness in both the echo response and the input
signal by making the tap-selection criterion depen-
dent on the product of these two values. Updating
of a tap will be avoided if either the tap-input
sample or the tap coefficient are sufficiently small.
As will be discussed further, joint exploitation of
system sparseness and signal sparseness is the
concept that underlies the PIPNLMS algorithm
developed in Section 4.

4. An improved IPNLMS algorithm with efficient
partial update

Section 2 discussed the modification of stochastic
gradient adaptive algorithms such that the effective
adaptation step-size is proportional to the magni-
tude of each coefficient. This approach aims to
improve the effectiveness of adaptive identification
of sparse systems and leads to the PNLMS
algorithm [10]. It has also been shown how pure
proportionate updating can be improved upon by
introducing an amount of non-proportionate up-
dating so that, as in the resulting PNLMS++ and
IPNLMS algorithms [12,13], a mixture of propor-
tionate and non-proportionate updating is used. In
PNLMS++ the relative weighting of proportionate
and non-proportionate updating employed is con-
trolled by the ratio of the number of PNLMS and
NLMS iterations. The typical alternating scheme
results in equal weighting. In IPNLMS, the relative
weighting of the proportionate and non-propor-
tionate terms of the update equation is set by the
parameter o in (10). A value of o = 0 corresponds to
an equal weighting in IPNLMS.

In both PNLMS++ and IPNLMS that the
relative weighting between NLMS- and PNLMS-
type updating is identical for all taps. We now
propose a modified approach for which the relative
weighting of proportionate and non-proportionate
updating is adjusted individually for each tap. An
earlier version of this approach was outlined in [14].
We also present an efficient implementation of the
modified approach employing partial updating.

In proportionate updating, taps with large
magnitude, such as occur in the active region, are
updated using proportionately large values of
effective adaptation step-size. This is a great
advantage during the early stage of initial conver-
gence since fast adaptation of these large magnitude
taps will quickly reduce both output error and
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normalized misalignment. However, when they have
converged near to their optimal values, the large
step-size will result in correspondingly large levels of
coefficient noise at these taps. In contrast, taps with
small magnitude, such as that occur in inactive
regions, will be updated with proportionately small
values of effective adaptation step-size because of
the normalization applied to the gain vector in (4),
and will therefore contribute correspondingly small
levels of coefficient noise.

The aim of our improved algorithm is to benefit
from the advantages of proportionate updating
without paying the penalty in terms of coefficient
noise for large magnitude taps. This is achieved by
using two different values for o. For taps with large
magnitude, « is chosen such that non-proportionate
updating is weighted more strongly. For taps with
small magnitude, o is chosen such that propor-
tionate updating is favored. Implementation of this
scheme requires a simple threshold above which
taps are considered large. We have used a threshold
in the form I' x max(h(n)) and determined experi-
mentally that a reasonable choice of I is 0.1, though
the algorithm is not very sensitive to this choice. The
IIPNLMS algorithm is given by

e(n) = d(n) — x(n)"h(n), (29)
g,(n) = max(p * max(|h(n)]), | (n)]), (30)

g(n) = [go(n), g,(n), ..., g, _1()], (31)

al, g/(m)>TI x max(g(n)),
ou(n) = { o2, g/ (m)<I’ x max(gn)), (32)
1— h
ki) =+ o) et (33)
K'(n) = diag{ky(n), k\(n), ...k} _(n)}, (34)
b1+ 1) = h(n) + — LK X)) (35)

xT(n)K'(n)x(n) + dypnims |

It has been seen in Section 3 how a reduction in
computational complexity can be achieved through
the use of partial updating schemes for adaptive
filters. We now wish to integrate such a scheme into
the IIPNLMS algorithm. The scheme selected
employs an efficient approximation to the MMax
tap-selection criterion. The MMaxNLMS partial
update scheme [7] has been shown in [9] to introduce
only a graceful degradation in convergence perfor-
mance when 0.5L <M < L. However, the reduction

in computation made by updating only a subset of
tap coefficients is offset to some degree by a
computational overhead that arises from the need
to sort the tap input vector for the M maximum
elements at each iteration. For example, the SORT-
LINE procedure [20] requires 2log, L + 2 compar-
isons. An efficient approximation to the MMax
scheme was introduced in [21] known as the short-
sort MMax procedure.

The short-sort MMax procedure operates by
considering a short segment of the tap input vector
x(n) = [x(n),x(n —1),...,x(n— S+ 1)] of length
S < L. Once every S iterations, an efficient insertion
sort [23] is performed on X, as shown in [21], and A4
coefficients are selected corresponding to the ele-
ments of X with largest magnitude. This tap-
selection is propagated through the filter by
incrementing the indices of the selected coefficients
by one at each sample period.

Combining the short-sort MMax tap-selection
with [TIPNLMS leads to the following PIPNLMS
algorithm.

uK'(m)x(n)e(n)
K'(n)x(n) + dupnims
(36)

h(n +1) = b9+ QU)o

where K’ is given in (29) to (35),
if (nmodS) =0

1,
q,(n) = {0

for/=0,1,...,5—1,
Q(n) = diag{qy(n),...,qs_1(n),
Os_1s1n=1),...,01 51 »(n— 1},

|X;(n)] € A maxima of |X|,

otherwise,

else
Q(n) = diag{0, Qyo(n — 1),
O n—=1),...,0, 5 (n—1},

where Q, (n) represents the 7,/th element of matrix
Q at sample n.

5. Simulation results

The convergence rate of the above algorithms has
been compared in an echo cancellation experiment
in which the echo response is sparse as shown in
Fig. 2. Convergence rate has been measured in terms
of the normalized misalignment ||hop — h(n)|?/ Ihopt &
where h,,, are the coefficients of the true echo
response. The first set of tests employed Gaussian
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Fig. 4. Convergence for sparse echo response with Gaussian
white noise input.

distributed white noise input with 8 kHz sampling
frequency and measurement noise was injected to
give an SNR of 25dB. The echo response, as shown
in Fig. 2, and the adaptive filter were both of length
L = 1024 and the other parameters were u = 0.2,
p=001, =0, al =—0.5, 2 =0.5 and I =0.1.
Fig. 4 shows the convergence curves for NLMS,
PNLMS, IPNLMS and ITPNLMS. It can be seen,
as expected, that all methods exhibit the same level
of final misalignment. The convergence rate of
ITIPNLMS can be seen to be the fastest of the
methods tested with around 2 to 3 dB less misalign-
ment than IPNLMS during the main period of
convergence. IPNLMS performs better than
PNLMS by a similar margin. Finally, NLMS can
be seen to have the slowest rate of convergence
taking 1.58s to converge to —20dB compared to
0.31, 0.42 and 0.49s for IIPNLMS, IPNLMS and
PNLMS, respectively. Direct comparisons with the
exponentiated gradient approach have been omitted
here since, as discussed in Section 2.4, IPNLMS
would normally be preferred in practice.

The second set of tests employed a speech signal
from a male talker. The parameters were unchanged
from the white noise tests except that u was reduced
to 0.1 as is typical for speech signals. The
convergence results in Fig. 5 show the same
performance ranking as in the tests with noise
input, though the differences are somewhat de-
creased. To examine the operation of [IPNLMS, the
values of o;(n) obtained during the speech signal test
of Fig. 5 have been plotted at intervals of 12.5ms in
Fig. 6. After initialization, o;(n) takes the values of
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Fig. 5. Convergence for sparse echo response with speech signal
input. The speech signal is shown in the upper plot.
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Fig. 6. Evolution of o;(n) plotted at 12.5ms intervals after
initialization for speech signal input. Top trace shows sparse echo
response. Note that the vertical axis labels refer to the elapsed
time in ms. Within each horizontal trace, oy(n) takes the values
+0.5.

either +0.5 or —0.5 indicating an emphasis on
PNLMS or NLMS, respectively. It can be seen that
oy(n) varies seemingly randomly for the first 5
analysis intervals, which corresponds to the bulk
delay time of the sparse response. After this delay,
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at 62.5ms, a;(n) begins to detect the active region.
After 75 ms of iterations, the active region is located
almost exactly. It is clear from Fig. 6 that IIPNLMS
successfully identifies active and inactive regions in
the sparse echo response and so is able to control
oy(n) appropriately for each coefficient /#;(n),
/I=0,1,...,L—1.

A further set of tests has been conducted that
illustrate the effectiveness of combining propor-
tionate update and partial update—the former
exploiting sparseness in the echo responses and the
latter aimed at reducing complexity by exploiting
sparseness in the input signal. These results are
shown in Fig. 7. This plot compares the perfor-
mance of fully updated IPNLMS and IIPNLMS to
partially updated IIPNLMS algorithms employing
MMax tap-selection, IIPNLMS-MMax, and our
efficient approximate MMax scheme, PIPNLMS.
White Gaussian noise input signals were used and
measurement noise was injected at an SNR of
25dB. The echo response, as shown in Fig. 2 and

IPNLMS
-5F
PIPNLMS

m
o
s -10f
£ 1IPNLMS-MMax
)
8 15
g -

_20_

1IIPNLMS
05 . . \ ]
0 0.5 1 1.5 2
Time (s)

Fig. 7. Comparison of IPNLMS, IIPNLMS with MMax tap-
selection and PIPNLMS. M = 0.5L, S =32, 4 = 16.

Table 1

the adaptive filter were of length L = 1024 and
wu=02 p=001, « =0, al =—-0.5, a2 =10.5 and
I' =0.1. It can be seen that, whereas the perfor-
mance improvement for our fully updated
IIPNLMS algorithm over IPNLMS is around
3dB, the performance improvement when MMax
partial updating is applied drops almost impercept-
ibly to around 2.5dB for our IIPNLMS-MMax
approach. The performance improvement over
IPNLMS achieved by our lower-complexity
PIPNLMS algorithm is around 2dB.

The computational complexity order of the
various algorithms is compared in Table 1 in terms
of the number of multiply operations per iteration.
Efficient recursive implementation of the denomi-
nator normalization terms in the coefficient update
is assumed in all cases. The short-sort procedure
used in PIPNLMS requires only (4 + A(S — A))/S
comparisons per sample [21] and is assumed
negligible compared to L.

6. Discussion and conclusions

The topic of sparse echo cancellation has been
discussed, where a sequence is considered ‘sparse’ if
a large fraction of its energy is concentrated in a
small fraction of its duration. Two types of
sparseness have been considered in the context of
echo cancellation. Sparseness in the echo response
occurs in network echo cancellation, particularly for
packet-switched networks, and in acoustic echo
cancellation, particularly when the direct acoustic
path propagation causes significant bulk delay.
Sparseness in the input signal occurs in speech
signals to some degree, dependent on the utterance
and talker characteristics.

The concept of proportionate updating is effec-
tive for identifying sparse echo responses. A number
of different algorithms employing this concept have

Computational complexity per sample period. The bracketed entries are an example with parameters chosen as in Fig. 7

Algorithm Multiplies Comparisons
Convolution Tap update Total

PNLMS L 2L 3L 2L

IPNLMS L 3L 4L 0

IIPNLMS L 3L 4L 4L

PIPNLMS L L+2M 2(L+ M) AM + (A + A(S — A))/S

(PIPNLMYS) (L) L) (3L) QL +38.5)
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been reviewed and evaluated. The results confirm
that the performance of pure proportionate updat-
ing can be improved by incorporating a degree of
nonproportionate updating such as in IPNLMS
which performs most consistently well.

The trade-off between convergence speed and
coefficient noise is an important consideration in
this context. For large amplitude -coefficients,
proportionate updating applies a relatively large
effective adaptive step-size. This is beneficial for fast
convergence, leading to fast initial reduction in
overall error, but introduces relatively high levels of
coefficient noise. For small amplitude coefficients, a
correspondingly small effective adaptive step-size is
applied. This offsets the high coefficient noise on the
large amplitude coefficients. The trade-off can be
controlled to some extent by modifying the relation-
ship between a coefficient amplitude and the
effective adaptive step-size employed for its update.
The directly proportional relationship used in
PNLMS is modified by the addition of a constant
term in IPNLMS and, on average, in PNLMS++.
Exponentiation of the gradient estimate is an
alternative approach which has been seen to
correspond to proportionate updating when a slow
learning rate is used. Determining an optimal
function for this relationship is an interesting topic
of ongoing work. For example, Deng and Doroslo-
vacki [24] have considered the use of the u-law
function.

We have introduced the ITPNLMS algorithm
which extends the concept of adjusting the relation-
ship between the effective adaptation step-size and
the coefficient amplitude. Whereas existing algo-
rithms use the same relationship for all coefficients,
the new algorithm can use different relationships. In
ITPNLMS, the algorithm chooses between two
different relationships depending on whether the
coefficient is considered active or inactive. The
motivation for the use of only two relationships
comes from the network echo cancellation applica-
tion in which coefficients can realistically be
classified as active or inactive. However, the
approach could, in principle, be extended more
generally.

The PIPNLMS algorithm that we have presented
brings together the two concepts of proportionate
updating and partial updating. The proportionate
updating is done using our IIPNLMS approach and
the partial updating employs the MMax approach
either in its true form or else using the efficient
short-sort MMax approximation. In this way,

PIPNLMS addresses both types of sparseness
simultaneously with the aim of achieving improved
sparse system identification whilst maintaining low
computation complexity. Our results indicate that
the performance degradation due to true MMax
partial updating with M = L/2 is negligible. The
complexity reduction associated with the short-sort
MMax partial updating is shown in our results to
carry a penalty of approximately 1 dB during initial
convergence compared to fully updated IIPNLMS
but nevertheless retains most of the performance
advantage of the [IPNLMS algorithm.
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