
Enhanced Scheduling Algorithms for Improved
TCP Performance in Wireless IP Networks

Thierry E. Klein Kin K. Leung Haitao Zheng
Wireless Research Laboratory, Lucent Technologies – Bell Laboratories

600 - 700 Mountain Avenue, Murray Hill, NJ 07974
e-mail: {tek, kin, haitaoz}@lucent.com

Abstract— Current and next-generation wireless net-
works rely on multi-user diversity and scheduling tech-
niques (such as the commonly used Proportional Fair (PF)
algorithm) to achieve greater system throughput and higher
efficiencies for wireless data applications over a time-
varying wireless channel. In this paper, we show that the
variability of the inter-scheduling intervals, as introduced
by the PF scheduling algorithm, can have adverse effects
on TCP and its congestion control mechanism and lead to
spurious timeouts and unnecessarily low throughput. We
propose an enhanced scheduling algorithm that is explicitly
tuned towards throughput performance at the TCP layer.
However this algorithm does not use any explicit informa-
tion from the TCP layer and solely relies on information
readily available at the link layer at which the scheduler
resides. The performance of this improved algorithm is
assessed through extensive simulations to show an average
TCP throughput improvement of 12% compared to PF. In
addition, the TCP-level fairness across all users is increased
as is the individual user throughput.

Keywords: TCP, Proportional Fair, inter-scheduling
interval, timeout, fairness, throughput.

I. I NTRODUCTION

Current and next-generation wireless networks rely on
multi-user diversity and scheduling techniques to achieve
greater system throughputs for wireless data applica-
tions. One particularly attractive strategy is to schedule
data transmissions based on the relative channel quality
of the different users, while aiming for an acceptable
balance between system performance and fairness among
users. A well-known algorithm that achieves precisely
this objective is Proportional Fair which is, for example,
used in CDMA 1X EV-DO systems [1], [6]. The the-
oretical performance of the Proportional Fair algorithm
is analyzed in [3] and [10], and for an assessment of
the user-level performance, the reader is referred, for
example, to [4] and [5] and references therein.

To our knowledge, most of the research work in the
literature has focused on the multi-access-layer perfor-
mance of the Proportional Fair algorithm in particular or
scheduling algorithms in general. However the impact of
the scheduling algorithms on the end-to-end performance
(measured at the network and transport layers) as experi-

enced by the users’ applications is not well-studied. The
transmission control protocol (TCP) [8] remains the most
widely used transport control protocol in the Internet
today. In particular, the interaction between TCP and
its congestion control mechanism and the scheduling
algorithm at the multi-access layer has not yet been
investigated. Since the users’ channel conditions are
random, the scheduling instants of a particular user are
also random under an opportunistic scheduling algo-
rithm. Therefore the inter-scheduling intervals and the
packet transmission times are again random variables.
Our research shows that this randomness introduced
by the Proportional Fair algorithm can lead to signifi-
cant inter-scheduling intervals and highly varying packet
transmission times. In fact the variability of the packet
transmission time is shown to be large enough to cause
spurious TCP timeouts. Spurious timeouts unnecessar-
ily trigger the TCP congestion control mechanism and
unnecessarily reduce the throughput. In this paper, we
concentrate on the effect of PF on spurious timeouts,
but note that an additional consequence of a larger
packet delay variability is buffer overflow, which may
lead to further throughput degradations. We propose a
new scheduling algorithm that aims at controlling the
variability of the inter-scheduling interval. The main
objective is to avoid TCP timeouts, thereby achieving
greater efficiency and more predictable performance. A
secondary objective is to ensure that the TCP throughput
as experienced by each user is proportionally fair to the
average channel quality, thereby justifying the name of
our proposed scheduling algorithm asTCP Proportional
Fair. Note that an algorithm is calledproportionally
fair if it maximizes the sum of the logarithmic values
of the achieved throughputs [10]. We emphasize that
we do not allow for any information of the TCP layer
to be transmitted to the multi-access (MAC) layer (at
which the scheduling algorithm resides), but only rely
on information that is readily available at the MAC layer
and from which some of the relevant TCP parameters
can be inferred. Of course further improvements may
be achieved if additional cross-layer information were



available. The new algorithm is motivated by analytical
calculations of a queuing model with vacations [2], [9]
that captures the essential effects of scheduling algo-
rithms. Extensive simulations confirm the merits of our
enhanced scheduling algorithm.

The remainder of the paper is organized as follows.
In Section II we provide further motivation for our
enhanced algorithm after investigating the impact of Pro-
portional Fair at the TCP layer and specifically exhibiting
that spurious timeouts may occur as the consequence
of the variability of the scheduling interval. Section III
presents our enhanced scheduling algorithm based on a
queuing model to capture the main features of scheduling
algorithms and the corresponding calculation of the
average packet system time. Numerical results and some
discussions are presented in Section IV. Conclusions
follow in Section V.

II. SPURIOUSTIMEOUTS WITH PROPORTIONALFAIR

In this section, we investigate the Proportional Fair
(PF) algorithm in greater detail by specifically concen-
trating on the resulting variability of the inter-scheduling
intervals experienced by the users. Before we proceed,
we briefly summarize the operations performed by the
traditional PF algorithm [10]. The system is time-slotted
and in time slotn, each useri reports the maximum
value of the feasible transmission rateRi[n] (in bits/sec),
which can be reliably sustained in that slot. The sched-
uler then determines the user with the largest scheduling
metric calculated as:

M
(MAC−PF )
i [n] =

Ri[n]
Ai[n − 1]

, (1)

where Ai[n] is the average throughput (in bits/sec) of
useri up to time slotn and is calculated as:

Ai[n] = ω δi[n]Ri[n] + (1 − ω)Ai[n − 1], (2)

whereω is a parameter to be tuned and is typically taken
asω = 1

1000 [6] and δi[n] = 1 if user i is scheduled in
slot n andδi[n] = 0 otherwise.

As an example to motivate our work, we consider a
single base station serving21 users randomly located
in a cell of radius 2 km. Users’ transmissions are
scheduled according to PF with a slot length of5 msec.
In Figure 1 we show the successive inter-scheduling
intervals experienced by a particular user with relatively
good average channel quality. It is observed that the
scheduling intervals can be quite substantial and exhibit
significant variability during the simulation run. Espe-
cially it is also noteworthy that the scheduling interval
can suddenly increase to a very large value creating a
so-calledscheduling delay spike. We repeat the above

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Scheduling Index

In
te

r−
S

ch
ed

ul
in

g 
In

te
rv

al
 (

se
c)

Fig. 1. Example of inter-scheduling intervals experienced by user
under PF scheduling algorithm.

experiment50 times where we randomly and uniformly
choose different user locations for each run. We observe
that on average10 of the21 users experience at least one
inter-scheduling interval that is larger than ten times the
mean value of its inter-scheduling intervals; and more
than15 out of the21 users experience inter-scheduling
intervals larger than four times the mean value.

Figure 2 shows the evolution of the TCP congestion
window and the packet and acknowledgement indices
over time. We also included the scheduling instants and
an indication of when a frame error is recorded (for
example at time7 sec). This plot clearly exhibits that a
scheduling gap on the order of2 seconds is experienced
which is significant enough to cause TCP to timeout.
However this timeout is not related to any packet loss as
there are no frame errors recorded at the corresponding
time and we have considered infinite buffers in our
system to avoid buffer overflow problems. Thus the
observed effects are solely due to the scheduling jitter.

TCP at the server recognizes the MAC scheduling
delay spike as an instance of network congestion where
all outstanding packetsi.e. packets numbered from176
to 270, are lost. Unaware that these packets are waiting
at the base station MAC buffer, TCP times out (at time
4.6), reduces its congestion window to1 and retransmits
packets176 to 270. Since the base station and the
MAC layer do not have any capability to distinguish
duplicate TCP packets, this unnecessary retransmission
further degrades the throughput performance. TCP at the
sender receives duplicate acknowledgments during time
9.4 and14.8 due to duplicate packets, interprets them as
a sign of packet loss and triggers the congestion control



0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(sec)

Send Segment Sequence number 

Received ACK number 

TCP congestion window (segment) 

Scheduled Transmission

Mobile Received Segment 
Sequence number 

delay spike

Fig. 2. Evolution of TCP congestion window under Proportional Fair.

procedures to recover the packets presumed lost. This
yields additional duplicate packets and leads to another
TCP timeout at time 11.2. In summary, for a relatively
long time after the initial delay spike, TCP continues
to experience congestion and timeouts due to duplicate
packet transmissions.

These results motivate the search for more efficient
scheduling algorithms that control the variability of the
inter-scheduling intervals, thereby reduce or eliminate
the ensuing timeouts and their consequences and thus
achieve more predictable TCP layer performance. The
spurious timeouts lead to TCP throughput degradation
through unnecessary packet retransmissions. Hence the
TCP layer throughput is no longer proportional to the
MAC layer throughput and hence is not proportional to
the user’s channel condition, as desired by the PF algo-
rithm. A second objective of our enhanced scheduling
algorithm therefore is to achieve proportional fairness
between the users at the TCP layer in a similar way that
PF achieves proportional fairness at the MAC layer at
which the scheduler operates.

III. SCHEDULING ALGORITHM FOR TCP
PERFORMANCE

In this section, we describe the details of our new
scheduling algorithm, called TCP Proportional Fair
(TCP-PF) algorithm. We calculate the the average packet
delay using a queuing-theoretic model for a system with
batch arrivals and server vacations. We then show how
the derived expression for the average packet delay is
used to determine the new scheduling metric for TCP-
PF. Finally we provide the details of how TCP-PF can be
implemented in recursive fashion in a practical system.

A. Theoretical Foundation of TCP-PF Algorithm

If the objective of PF is to make the MAC layer
throughput proportional to the average user channel
condition, our objective for the enhanced scheduler can
be viewed as ensuring that the TCP layer throughput is
proportionally fair. Thus, by analogy with the metric in
equation (1), the user to be scheduled in any given time
slot should be chosen as the user that maximizes the
scheduling metric:

M
(TCP−PF )
i [n] =

Ri[n]
Γi[n − 1]

, (3)

where Γi[n] is the smoothed average TCP throughput of
user i at time slot n. In general it is very difficult to get an
accurate expression for the TCP throughput as it depends
on the dynamics of the congestion control mechanism,
the round trip time (RTT) and its interaction with the
lower layer protocols. However, for long-lived TCP
flows, the throughput may be quite closely approximated
as the ratio of the congestion window size to the average
RTT. The congestion window is taken to be proportional
to the MAC layer throughput Ai. This approximation is
justified since a larger MAC throughput translates into
a larger number of packets sent and acknowledgements
received by the sender and therefore results in a greater
increase in the TCP congestion window. The proportion-
ality factor is assumed to be the same for all the users
and therefore does not influence the scheduling metric.
On the other hand, the RTT experienced by a TCP
packet is the sum of several components, including the
waiting, scheduling and transmission time of the packet
over the air interface, processing and buffering delays
in the backhaul network and at the TCP sender as well
as transmission delays in the wired network. The latter
components are not easily estimated, but can be assumed
to be relatively small compared to the delays incurred in
the wireless part of the network. This is especially true
since the air interface continues to be the bottleneck link
in the network. Hence we identify the average RTT Tp

experienced by a packet with the waiting and scheduling
time in the transmission queue and the transmission time
over the air.

In order to calculate the total packet system time, we
consider an expanded M/G/1 queuing model [2], [9].
Specifically, the main idea is to consider that, when the
scheduler allocates its resources to other users, the server
takes a vacation for user i. Packets arrive according to
a Poisson process of rate λp packets/sec. Each packet
actually contains a batch of a random number of K seg-
ments, with mean K and second moment K2 (modelling
the fragmentation of a TCP packet by the lower layers).



The service time of a segment is assumed to have a
general distribution of mean X and second moment X2.
However in addition, we assume that, after serving a
segment, the server takes a vacation, with mean V and
second moment V 2. We assume that all service times
and vacations are independent and identically distributed.
The total system time Tp(i) of the i-th packet is then
given by:

Tp(i) = S(i)+
N(i)+K(i)−1∑

j=1

[X(j) + V (j)]+X(i), (4)

where S(i) is the residual service time required by the
server to finish the service of the segment currently being
served or an associated vacation. N(i) is the number
of segments waiting in queue when segment i arrives.
K(i) is the number of segments in the batch (i.e. in
packet) i. X(j) and V (j) are, respectively the service
time of segment j and the vacation taken by the server
after service to segment j. Upon taking expectations in
equation (4) and using the independence of the number
of packets in the queue and the service times, the average
packet system time in steady state, assuming it exists, is
given by:

Tp = S +Ns

(
X + V

)
+

(
K − 1

) (
X + V

)
+X. (5)

Returning to the derivation of the scheduling metric,
we now have that the our enhanced scheduling metric
chooses the user with the largest value of:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

Ti[n], (6)

where Ti[n] is the average system time of a packet of
user i as estimated at time n. The remaining difficulty
is to compute the packet waiting time in (5) using
only information that is available at the MAC layer
without explicit information transfer between the MAC
and the TCP layers. The average residual time S may
be calculated using similar arguments to the ones in [2]:

S =
1
2

ρ
(X + V )2

X + V
+

1
2

(1 − ρ)
V 2

V
, (7)

where the utilization factor ρ is calculated as ρ =
λp K

(
X + V

)
. If all users are assumed to be statis-

tically identical and always have traffic to send, it can
be expected that all users receive equal service time from
the server (asymptotically this result has been shown
for the PF scheduling algorithm [5]) and therefore we
approximate a vacation as a sum of M−1 service times.
Thus it is easily seen that V = (M − 1)X . Similarly, a

few steps of algebra show that:

(X + V )2 =
M

M − 1

[
V 2 +

1
M − 1

V
2
]

. (8)

Upon substitution into equation (7), we obtain that:

S =
1
2

ρ
V 2 + 1

M−1 V
2

V
+

1
2

(1 − ρ)
V 2

V
, (9)

� 1
2

V 2
i

Vi

, (10)

where the last approximation is valid when the num-
ber of users M in the system is large. We have also
made the dependency on user i more explicit. The
term Ns

(
X + V

)
in equation (5) represents the total

average time required to transmit all the segments in
the buffer and may be approximated by the ratio of the
average queue size Qi (in bits) at the MAC layer to the
average achieved MAC throughput Ai (in bits/sec). In
other words we approximate Ns

(
X + V

)
by Qi

Ai
. Note

that both quantities are available to the scheduler. The
term

(
K − 1

) (
X + V

)
may be ignored, especially if

the average number of segments in the buffer is larger
than the number of segments per TCP packet, as is
typically the case in a reasonably loaded system. Finally
the average transmission time of a segment X can be
neglected compared to the average vacation time (again
in the limit of a large number of users in the system).
Thus the scheduling metric in equation (6) becomes:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

[
1
2

V 2
i

Vi

+
Qi

Ai

]
. (11)

We emphasize that the above scheduling metric can
be viewed as an extension of the PF scheduling metric
with a correction term related to the first and second mo-
ments of the inter-scheduling intervals and the expected
transmission time to transmit all the data in the queue.

B. Implementation of TCP-PF Scheduling Algorithm

We now show how the different quantities in (11)
are computed in a recursive and on-line fashion, solely
based on readily available information at the MAC layer.
This leads us to a description of how TCP-PF can be
implemented in a practical network scenario in similar
fashion to PF. The smoothed average throughput is
calculated in equation (2). The average queue size (in
bits) of user i is similarly calculated:

Qi[n] = ω qi[n] + (1 − ω)Qi[n − 1], (12)

where qi[n] is the value of the queue of user i in time
slot n. The exponential weighting factor ω is the same
as for the tracking of the average MAC throughput as



we would like to compute both quantities using the same
time scales. Let nj

i be the time (or equivalently the slot
index) in which the j-th transmission for user i was
scheduled and define the inter-scheduling interval as:

φj
i = nj+1

i − nj
i . (13)

Whenever user i is scheduled for transmission, the
smoothed values of the mean Φi and the second mo-
ment Σi of the inter-scheduling intervals are updated as
follows:

Φj
i = α φj

i + (1 − α)Φj−1
i , (14)

Σj
i = β

(
φj

i

)2

+ (1 − β)Σj−1
i , (15)

where α and β are tunable parameters (between 0 and 1)
to control the time scales over which the respective quan-
tities are averaged. Our numerical experience reveals
that, α should be chosen relatively small to capture the
long term effects of the average inter-scheduling times.
Typically α = 0.1. On the other hand, the preferred
value of β is larger (typically taken as β = 0.5)
to better capture the system dynamics and reflect the
instantaneous changes of large inter-scheduling intervals.
The above calculations are only performed in a slot n
in which user i is scheduled, and are updated after the
scheduling decision has been made. In addition in every
slot, the following calculations are performed before
making the scheduling decision. We calculate the elapsed
time since each user was last scheduled, which would
correspond to the inter-scheduling interval if the user
were scheduled in the current slot. Let ni,last be the last
slot in which user i was scheduled. Then:

φ̂i[n] = n − ni,last. (16)

We now update the first and second moments of the
inter-scheduling intervals for each user, as if that user
were scheduled in the current slot. Specifically:

Φ̂i[n] = α φ̂i[n] + (1 − α)Φj
i , (17)

Σ̂i[n] = β
(
φ̂i[n]

)2

+ (1 − β)Σj
i , (18)

where Φj
i and Σj

i are the current smoothed first and
second moments of the inter-scheduling intervals for
user i and j is the index indicating how many times
user i has been scheduled. Using the expressions in
(12), (17) and (18) to track Qi, Vi and V 2

i , respectively,
and approximating Ai by Ai[n− 1], the new scheduling
metric in equation (11) becomes:

M
(TCP−PF )
i [n] =

Ri[n]
Ai[n − 1]

[
1
2

Σ̂i[n]
Φ̂i[n]

+
Qi[n]

Ai[n − 1]

]
.

(19)

The scheduling metric in equation (19) differs from
the original PF metric only by the extra factor in
brackets, which is used to approximate the average
RTT for the TCP performance. As shown in our ex-
tensive simulations, discussed in Section IV below, this
additional factor helps achieve proportional fairness at
the TCP layer and improve TCP throughput. Another
physical interpretation of the new metric is that the
additional factor gives priority to users whose packets
have experienced long waiting times, as a means to avoid
TCP timeouts.

IV. NUMERICAL RESULTS

In this section, we compare the performance of our
improved algorithm to that of PF using the Opnet net-
work simulation tool [7] to simulate a network consisting
of a radio network controller, a base station and mobile
terminals. Packet flows between the application server
and the base station experience a fixed one-way delay
of D = 20 msec. For simplicity we assume that the
uplink channel operates at 64 kbps and 0% frame error
rate. The simulated system consists of 21 users uniformly
and randomly placed in a cell of radius 2 km and
we simulate a typical driving speed of 30 km/h. The
channel encounters frequency-flat fading and the channel
estimation noise is modelled as additive white Gaussian
noise with zero mean and 0.5 dB variance. Jakes model
with Doppler spread corresponding to the chosen speed
at a 2 GHz carrier frequency was used to simulate the
Rayleigh fading. The transmission rate set consists of
the following rates: 320 kbps, 480 kbps, 640 kbps, 1.28
Mbps, 1.92 Mbps and 2.56 Mbps. The rate Ri[n] for user
i in time slot n is selected based on SINR feedback in
slot n and 1% FER requirement. Each user runs FTP
over TCP/IP, requesting a file of 700 kbytes and the
simulation time is 25 seconds for each chosen set of
user locations. The version of TCP used is TCP Reno
and the TCP packet length is fixed at 536 bytes. The
granularity of the retransmission timer is chosen to be
200 msec with a minimum value of 250 msec. Finally
the maximum window size is set to 64 kbytes in all of
our simulations.

In Figure 3, we show the evolution of the congestion
window under TCP-PF for the same user in the same
time interval as shown in Figure 2 for PF. We note that
TCP-PF does indeed eliminate the timeout occurrence
and provides a steady transmission of TCP packets. The
evolution of the congestion window is much smoother
and the congestion avoidance is not unnecessarily trig-
gered. In addition to the PF, the Round Robin (RR)
and the enhanced TCP-PF algorithm, we have also
considered two other algorithms, which we now briefly



0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time(sec)

Send Segment Sequence number 

TCP congestion window (segment) 

Received ACK number 

Scheduled Transmission

MAC frame error

Fig. 3. Evolution of TCP congestion window under TCP-PF.

describe. The first such algorithm, called the TCP-MAX
scheduling algorithm is based on the scheduling metric:

M
(TCP−MAX)
i [n] = Ri[n]

[
1
2

Σ̂i[n]
Φ̂i[n]

+
Qi[n]
Ai[n]

]
. (20)

This algorithm attempts to maximize the total system
throughput as measured at the TCP layer. A second
scheduler based only on the instantaneous transmission
rate Ri[n] would attempt to maximize the MAC layer
throughput, and is denoted by MAX in the remainder
of the paper. In Figure 4, we show the cumulative
distribution function (cdf) for the total system throughput
achieved by the different algorithms (for different simu-
lation runs). As expected, TCP-MAX achieves a larger
TCP throughput than TCP-PF, although the performance
difference is not that significant. However the important
result is that the throughput achieved by TCP-PF is
significantly larger than that of PF (by an average of
about 12%). The plot also shows that the TCP throughput
achieved by MAX is severly degraded, although this
algorithm achieves the largest MAC-layer throughput.
The reason for this performance degradation is that the
algorithm tends to only schedule users with good average
channel conditions. Users in relatively poor conditions
are only scheduled when they experience large channel
fluctuations due to fast fading effects. However these
fluctuations may not last long enough to allow a user
to complete a successful packet transmission. The con-
sequence is that the number of TCP timeouts is greatly
increased, hence leading to very low TCP throughput.
Finally we point out that TCP-PF largely outperforms
RR, which leads us to conclude that TCP-PF does not
blindly reduce the inter-scheduling intervals, but remains

aware of the relative strengths of the users’ channel con-
ditions and finds a good compromise between multi-user
diversity and variability of inter-scheduling intervals.

Nevertheless Figure 4 only gives a partial analysis
of the performance of the algorithms. In Figure 5, we
show the cdf of the TCP throughput achieved by the
individual users. We conclude that TCP-PF improves the
throughput performance of the ”high-end” users, while
not degrading that of the ” low-end” users. This is in
stark contrast to the MAX and TCP-MAX algorithms
that attempt to maximize the total system throughput
at the expense of the users in relatively poor channel
conditions.

80 100 120 140 160 180 200 220
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 System TCP Throughput (Kbytes/sec)

RR MAX PF TCP−MAX 

TCP−PF 

Fig. 4. CDF of TCP system throughput for different scheduling
algorithms over 50 simulation runs.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

User TCP Throughput (Kbytes/sec)

MAX 

RR 

TCP−MAX 

TCP−PF 

PF 

Fig. 5. CDF of individual user TCP throughput for different
scheduling algorithms.



One of the objectives for the enhanced scheduling
metric was to ensure that the throughput achieved at the
TCP layer conforms to the proportionally fair objective.
We now provide evidence that our proposed algorithm
does in fact achieve proportional fairness at the TCP
layer. It is well-known [10] that PF is the algorithm that
maximizes the objective function

∑M
i=1 log {Ai}, where

Ai denotes the MAC-level throughput of user i. Thus we
may consider the following metric to evaluate the TCP-
level fairness achieved by each of our algorithms:

Fsys =
1
M

M∑
i=1

log {Γi} (21)

where Γi (in kbytes/sec) denotes the achieved TCP
throughput of user i. The larger the metric, the closer
the corresponding algorithm is deemed to achieve pro-
portional fairness. In Figure 6, we show the cdf of the
fairness metric in equation (21), where the cdf is again
taken over different simulation runs. We confirm that
TCP-PF achieves the largest fairness metric among all
algorithms.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 System Fairness Metric

RR 

TCP−MAX 

PF 

TCP−PF 

Fig. 6. CDF of the system fairness metric for different scheduling
algorithms over 50 simulation runs.

In summary, TCP-PF greatly increases the system
throughput compared to PF as well as the system fair-
ness. However it is especially noteworthy that the in-
creased system fairness in Figure 6 is not achieved at the
expense of the overall system throughput (as is evidenced
by the fact that TCP-PF performs very closely to TCP-
MAX in Figure 4). In Table I, we summarize the average
system throughput Γsys (in kbytes/sec) results obtained
by the different algorithms, where the average is taken
over the different simulation runs. We also include the
system fairness Fsys achieved by the different algorithms

and the minimum achieved throughput by a user with
90% coverage Γ0.9 (in kbytes/sec).

Table I: TCP Throughput and fairness comparison of
different scheduling algorithms

Γsys Fsys Γ0.9

RR 111.41 0.669 1.92
PF 173.97 0.901 5.12

TCP-PF 194.43 0.948 6.40
MAX 112.12 −∞ 0

TCP-MAX 199.27 0.780 0.64

V. CONCLUSIONS

We have investigated the impact of the Proportional
Fair scheduling algorithm on the performance of TCP.
In particular it is demonstrated that the scheduling algo-
rithm can lead to significant inter-scheduling intervals
which may cause spurious TCP timeouts and falsely
trigger the congestion control mechanism. An enhanced
scheduling algorithm is proposed that alleviates these
problems, avoids unnecessary TCP timeouts and conse-
quently achieves greater TCP throughput. In addition,
the enhanced algorithm provides a greater degree of
fairness at the TCP layer. Finally, due to the recursive
expressions, the algorithm is easily implemented without
explicit information from the TCP layer, but only relies
on information readily available at the multi-access layer.

ACKNOWLEDGMENT

The authors would like to thank Gee Rittenhouse and
Mark Haner for their continued support of this research.

REFERENCES

[1] P. Bender et al., ”CDMA/HDR: A Bandwidth-Efficient High-
Speed Wireless Data Sevice for Nomadic Users” , in IEEE Com-
munications Magazine, p. 70-77, July 2000.

[2] D. Bertsekas and R. G. Gallager, Data Networks, Prentice Hall,
1992.

[3] S. Borst and P. Whiting, ”Dynamic Rate Control Algorithms for
HDR Throughput Maximization” , in Proceedings of INFOCOM
2001, Anchorage, AK, p. 976 - 985, April 2001.

[4] S. Borst, K. Kumaran, K. Ramanan and P. Whiting, ”Queuing
Models for User-Level Performance of Proportional Fair Schedul-
ing” , Technical Memorandum, Bell Laboratories - Lucent Tech-
nologies, 2002.

[5] S. Borst, ”User-Level Performance of Channel-Aware Scheduling
Algorithms in Wireless Data Networks” , in Proceedings of INFO-
COM 2003, San Francisco, CA, March 2003.

[6] A. Jalali, R. Padovani and R. Pankaj, ”Data Throughput of CDMA-
HDR a High-Efficiency - High Data Rate Personal Communication
Wireless System” , in Proceedings of the 50th IEEE Vehicular
Technology Conference, p. 1854-1858, 2000.

[7] Opnet Technologies, http://www.opnet.com.
[8] W. R. Stevens, TCP/IP Illustrated, Vol. I, Addison Wesley, 1995.
[9] H. Takagi, Queueing Analysis, A Foundation of Performance

Evaluation, Volume 1: Vacation and Priority Systems, North-
Holland, 1991.

[10] D. N. C. Tse, ”Multiuser diversity and Proportional Fair Schedul-
ing” , in preparation.


