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Abstract. This paper considers an implicitly restarted Krylov subspace method that approxi-
mates a stable, linear transfer function f(s) of order n by one of order m, where n � m. It is well
known that oblique projections onto a Krylov subspace may generate unstable partial realizations.
To remedy this situation, the oblique projectors obtained via classical Krylov subspace methods are
supplemented with further projectors which enable the formation of stable partial realizations di-
rectly from f(s). A key feature of this process is that it may be incorporated into an implicit restart
scheme. A second difficulty arises from the fact that Krylov subspace methods often generate partial
realizations that contain nonessential modes. To this end, balanced truncation may be employed
to discard the unwanted part of the reduced-order model. This paper proposes oblique projection
methods for large-scale model reduction that simultaneously compute stable reduced-order models
while discarding all nonessential modes. It is shown that both of these tasks may be effected by a
single oblique projection process. Furthermore, the process is shown to naturally fit into an implicit
restart framework. The theoretical properties of these methods are thoroughly investigated, and
exact low-dimensional expressions for the L∞-norm of the residual errors are derived. Finally, the
behavior of the algorithm is illustrated on two large-scale examples.
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1. Introduction. Model reduction has been practiced widely by engineers, and,
until recently, the process was often based on intuition and a sound understanding
of the physical principles associated with the modeling task. Chemical engineers
assume that mixing is instantaneous and that packed distillation columns may be
modeled using discrete trays. Electrical engineers represent transmission lines and
eddy currents in the rotor cage of an induction motor by lumped circuits. Mechanical
engineers routinely remove the high-frequency vibration modes from models of aircraft
wings, turbine shafts, and flexible structures. The purpose of the present paper is to
systematize the model reduction of large-scale dynamical systems without any a priori
knowledge of their characteristics and to provide computable expressions for the errors
incurred during the approximation process.

Consider the dynamical system described by a stable, linear, time-invariant state-
space model of the form

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t),(1)

in which x(t) is the state vector of dimension n and u(t) and y(t) are scalar functions
representing the input and the output of the system, respectively. The matrix A and
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vectors b and c are real, with their dimensions fixed by those of x(t), u(t), and y(t). It
should be noted that the matrix A will be large and sparse in the following. Applying
Laplace transforms to the system in (1) for zero initial conditions leads to a transfer
function given by f(s) = c(sI −A)−1b. The task of any model-reduction algorithm is
then to find a stable approximate model of the form

ẋm(t) = Amxm(t) + bmu(t), ym(t) = cmxm(t),(2)

in which xm(t) ∈ Rm and m� n and where the associated low-order transfer function
is given by fm(s) = cm(sI − Am)−1bm. Well-established model reduction methods
such as the optimal Hankel norm [8] and the balanced truncation [20] begin by solving
the linear matrix equations

AP + PAT + bbT = 0 and ATQ+QA+ cT c = 0,(3)

which admit unique symmetric solutions if and only if λi(A) + λ̄j(A) 6= 0 for all
i, j, where λi denotes the ith eigenvalue and the overbar represents the complex
conjugate. Approximating large-scale systems via such methods is intractable because
of the prohibitive storage requirements and a computational burden of O(n3) for each
Lyapunov equation. The approach developed here has its roots in determining low-
rank approximate solutions to (3) via the application of classical Krylov subspace
methods [1, 18].

Recently, several schemes using Krylov subspace methods have been proposed
for the task of large-scale model reduction. The objective of such algorithms has
been to replace a high-order model by an mth-order low-dimensional approximation
while effecting O(m2n) operations. For example, in [1], this type of model reduction
formed an integral part of control system synthesis where high-order controllers had
to be avoided because of certain engineering considerations. Krylov subspace model
reduction schemes have recently been employed in linear circuit analysis, where they
allow for the accurate and efficient simulation of large-scale circuits [6]. In our pre-
vious work [16, 17, 18], the focus was placed on calculating low-rank approximate
solutions to (3). It was shown that these low-rank solutions were the exact controlla-
bility and observability Gramians of a dynamical system obtained by perturbing the
system in (1). Finally, it was demonstrated that the reduced-order models could be
readily computed via an oblique projection process based on the data generated in
the course of the iterative process. It is well known, however, that partial realizations
computed in this way may be unstable even if f(s) is stable. Thus, one of the aims
of this paper is to propose a method that yields a stable reduced-order model by
effecting a second oblique projection process which we shall call a stable projection.
An interesting feature of this method is that by combining the oblique projectors
generated by the iterative process with those from the stable projection, one may
compute stable reduced-order models by effecting a single oblique projection on f(s).
Consequently, one may cast the algorithm into an implicit restart setting which is
similar in philosophy to that proposed in [14, 15].

Stable partial realizations via implicitly restarted Krylov subspace methods have
been proposed in [14] in the context of control and in [15] in the setting of linear circuit
analysis. The difference between the methods proposed here and those of [14, 15] is
that, in the present setting, the integrity of both Arnoldi equations is preserved,
whereas [14, 15] focus on preserving only one of these equations. One may not wish
to approximate the state transition matrix independently of b and c, such as in a
modal reduction scheme, but rather obtain a reduced-order projection process that
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uses all the problem data. One advantage of the present approach is that it offers
computable expressions for the L∞-norm of the residual errors. Another advantage
is that the theoretical properties expounded in [18] remain in force irrespective of
the number of restarts performed; furthermore, the reduced-order model satisfies a
moment-matching property. While the implicit restart strategy presented here focuses
on model reduction, this approach may also be used to implicitly restart Krylov
subspace schemes for the solution of large-scale Lyapunov equations [16, 17] and
approximations to the exponential operator [22].

Krylov subspace methods are known to generate partial realizations which cap-
ture the outermost part of the spectrum of A. While this feature may be desirable in
some settings, such as for the solution of stiff ordinary differential equations, it often
results in reduced-order models that are unable to approximate the low-frequency
characteristics of f(s). A second objective addressed in this paper is to extract the
nonessential modes (i.e., those modes associated with the outermost part of A’s spec-
trum) from the reduced-order model by effecting a balanced truncation of fm(s). We
make use of a numerically robust variant of Moore’s algorithm [20] which does not
require the formation of the balancing transformations, known as the square root al-
gorithm [24]. A key feature of the square root model-reduction scheme is that it may
be cast as an oblique projection process and when combined with the oblique projec-
tors derived from the iterative process yields projectors that compute a reduced-order
approximation to f(s) which retains the essential characteristics of fm(s). A second
feature that will be exploited is that this process may be cast naturally into an im-
plicit restart framework. It is interesting to observe that one may combine the oblique
projectors from the iterative process with those obtained from the stable projection
and balanced truncation to produce an implicitly restarted Krylov subspace method
that computes stable partial realizations that accurately replicate the low-frequency
characteristics of f(s).

Related to this work are those of [4, 5], which use Krylov subspace methods to
obtain bases for the controllability and observability spaces; furthermore, in [5] Boley
and Golub presented a means of computing a minimal realization of a linear dynamical
system from the coefficients generated in the course of the Lanczos process. The
Lanczos process was also exploited by Parlett in [21] to obtain minimal realizations.
In that paper, the rank of the Hankel matrix was used to determine the order of
the minimal realization; furthermore, it was demonstrated that a minimal realization
could be constructed from the data generated by the Lanczos process. A similar
approach was adopted in [12], in which the minimal realization and its order were
found to be related to the different types of breakdown encountered in the Lanczos
process. Here too the onset of breakdown was given in terms of properties of the
Hankel matrix. Recently, the presentations in [3, 26] review the use of projection
methods for large-scale control problems. Each paper suggests the use of Krylov
subspace methods as an effective tool for the model reduction of large-scale linear
dynamical systems; however, no algorithms were provided.

The following summarizes the structure of this paper. Section 2 briefly describes
the application of classical Krylov subspace techniques to the model-reduction prob-
lem. Section 3 considers a general implicit restart structure for arbitrary transfor-
mations, a theoretical analysis is presented and computable L∞-norms of the error
expressions are derived. Section 4 uses the framework of section 3 to produce several
implicitly restarted Krylov subspace algorithms based on particular transformations
such as stable projections or balancing transformations. Two numerical experiments
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expounding the benefits of an implicitly restarted Krylov subspace method are found
in section 5, and section 6 contains the conclusions.

2. Oblique projection methods for large-scale model reduction. This
section considers oblique projection methods onto the m-dimensional Krylov sub-
spaces

Km(A, b) := span
{

[ b Ab · · · Am−1b ]
}

Lm(AT , cT ) := span
{

[ cT AT cT · · · (Am−1)T cT ]
}
,

which are parts of the controllability and observability subspaces, respectively. The
class of iterative techniques focused on hinge on the efficient formation of well-
conditioned bases for Km(A, b) and Lm(AT , cT ). To this end, one exploits a mod-
ified Gram–Schmidt process known as the Arnoldi process to calculate matrices Vm =
[v1, v2, . . . , vm] and Wm = [w1, w2, . . . , wm], whose columns form an orthogonal basis
for each of the Krylov subspaces as well as unit vectors vm+1 and wm+1, which are
orthogonal to Vm and Wm, respectively [2]. An outline of the Arnoldi process and
its application to several large-scale numerical linear algebra problems may be found
in [4, 7, 16, 17, 18, 19, 23]. By construction, the Arnoldi process associated with
Km(A, b) produces an m×m upper Hessenberg matrix Hm; furthermore, one readily
verifies that b and A satisfy

b = Vmlm,(4)

AVm = VmHm + ṼmH̃m,(5)

in which lm = e1‖b‖2, Ṽm = vm+1, and H̃m = hm+1,me
T
m and where hm+1,m is a

nonnegative scalar and e1 and em are, respectively, the first and last columns of the
m-dimensional identity matrix. From (5), it is easy to see that Hm = V TmAVm since

[Vm Ṽm] is part of an orthogonal matrix. In what follows, we refer to (4) and (5)
as the controllability Arnoldi equations. Similarly, associated with Lm(AT , cT ), the
Arnoldi process generates a lower Hessenberg matrix Gm; in this setting, c and A
then satisfy

cT = Wmk
T
m,(6)

ATWm = WmG
T
m + W̃mG̃

T
m,(7)

in which km = ‖c‖2eT1 , W̃m = wm+1, and G̃Tm = gm,m+1e
T
m and where gm,m+1

is a nonnegative scalar. It follows that Gm = WT
mAWm since [Wm W̃m] is part

of an orthogonal matrix. In the development below, we refer to (6) and (7) as the
observability Arnoldi equations. A key difference between the restart process proposed
in this paper and those of [14, 15] is that the present approach aims to preserve the
integrity of (4)–(7). The main advantage of this approach is that it allows simple
residual error expressions to be computed. In contrast, [14, 15] focus on preserving
(5) and (7), and no residual error expressions are provided. Furthermore, we show
that the implicitly restarted approximate model continues to satisfy a (modified)
moment-matching property enjoyed by the oblique projection approximation without
restarts.

2.1. Model reduction using Krylov subspace methods. The aim of this
section is to consider the Krylov subspace techniques described above to provide
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computationally efficient model-reduction schemes for large-scale dynamical systems.
Denoting the transfer function corresponding to the model (1) by f(s), then

f(s) = c(sI −A)−1b
s
=

[
A b
c 0

]
, A ∈ Rn×n, b, cT ∈ Rn.(8)

The model-reduction task determines a reduced-order model given by

fm(s) = cm(sI −Am)−1bm
s
=

[
Am bm
cm 0

]
, Am ∈ Rm×m, bm, c

T
m ∈ Rm,

which approximates the high-dimensional model f(s), where m� n.
Rewriting (8) as f(s) = cfb(s) = fc(s)b, where fb(s) = (sI − A)−1b and fc(s) =

c(sI − A)−1, permits us to consider fb(s) and fc(s) as the solutions to the coupled
linear systems

(sI −A)fb(s) = b and fc(s)(sI −A) = c,(9)

respectively. The focus of what follows is to approximate f(s) by obtaining approxi-
mate solutions fb,m(s) and fc,m(s) to the linear systems (9). These approximate solu-
tions are constructed to satisfy the following two conditions. (1) fb,m(s) ∈ Km(A, b),
i.e., fb,m(s) = Vmhm(s), such that Lm(AT , cT ) ⊥ {(sI−A)fb,m(s)− b}. (2) fTc,m(s) ∈
Lm(AT , cT ), i.e., fc,m(s) = gm(s)WT

m, such that {fc,m(s)(sI − A) − c} ⊥ Km(A, b).
Since fb,m(s) and fc,m(s) are approximate solutions to the linear systems in (9) and
f(s) = cfb(s) = fc(s)b, we will consider fm,1(s) := cfb,m(s) and fm,2(s) := fc,m(s)b
as approximations to f(s). The problem we wish to solve may be stated as follows.

Problem 2.1. Find approximate solutions fb,m(s) = Vmhm(s) and fc,m(s) =
gm(s)WT

m to (9) which satisfy the Galerkin-type conditions

WT
m{(sI −A)Vmhm(s)− b} = 0 ∀s, {gm(s)WT

m(sI −A)− c}Vm = 0 ∀s.(10)

For convenience, define the matrices

Ĥm := T−1
m WT

mAVm = Hm + T−1
m WT

mṼmH̃m,

Ĝm := WT
mAVmT

−1
m =Gm + G̃mW̃

T
mVmT

−1
m

for nonsingular Tm := WT
mVm and observe that Ĥm and Ĝm are upper and lower

Hessenberg, respectively. The following theorem gives the solution to Problem 2.1.
Theorem 2.1 (see [18]). Suppose that m steps of the Arnoldi process have been

taken and that Tm is nonsingular. Then
1. the Galerkin conditions in (10) are satisfied if and only if hm(s) = (sI −

Ĥm)−1lm and gm(s) = km(sI − Ĝm)−1. Under these conditions, the residual error
L∞-norms are

‖b− (sI −A)Vmhm(s)‖∞ =

∥∥∥∥[ T−1
m WT

mṼm
1

]
H̃mhm(s)

∥∥∥∥
∞
,(11) ∥∥c− gm(s)WT

m(sI −A)
∥∥
∞ =

∥∥∥gm(s)G̃m

[
W̃T
mVmT

−1
m 1

]∥∥∥
∞

;(12)

2. the approximations

fm,1(s)=cVmhm(s)
s
=

[
T−1
m WT

mAVm T−1
m WT

mb
cVm 0

]
=

[
Ĥm lm
kmTm 0

]
(13)
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and

fm,2(s)=gm(s)WT
mb

s
=

[
WT
mAVmT

−1
m WT

mb
cVmT

−1
m 0

]
=

[
Ĝm Tmlm
km 0

]
(14)

are different realizations of the same transfer function, namely, fm(s) = fm,1(s) =
fm,2(s) for all s.

Remark. 2.1. Throughout this paper, we assume that Tm is nonsingular, which is
equivalent to a breakdown-free Arnoldi process. Furthermore, for simplicity, we only
consider the model reduction of single-input single-output transfer functions. For the
model reduction of multi-input multioutput systems, one needs to resort to block
Arnoldi schemes. For more details of such processes, including breakdown, we refer
the reader to [4, 18] and the references therein.

Thus, for the mth-order approximate model described by (2), we can take either
fm(s) = fm,1(s) or fm(s) = fm,2(s), where fm,1(s) and fm,2(s) are given by (13) and
(14), respectively. The following procedure summarizes an oblique projection method
for model reduction of large-scale systems.

Algorithm 2.1 (Krylov subspace model-reduction algorithm).
• Start: Specify tolerances γ > 0 and ε > 0; set an integer parameter m.
• Perform m steps of the Arnoldi process with (A, b) to produce Hm, H̃m, Vm,

Ṽm, and lm.
• Perform m steps of the Arnoldi process with (AT , cT ) to produce Gm, G̃m,

Wm, W̃m, and km.
• Form the reduced-order model from either (13) or (14).
• Test the L∞-norm of the errors in (11) and (12); if either (11) > γ or (12) >
ε, increase m and continue the Arnoldi processes.

The reduced-order models given by (13) and (14) are computed readily from the
data generated in the course of the Arnoldi processes. It is known that such models
may be unstable even if f(s) is stable; furthermore, such partial realizations often con-
tain modes associated with the outer part of the spectrum of A. The following section
presents a framework able to remove such undesirable features by the application of
further oblique projectors within an implicit restart setting.

3. A general implicit restart framework. Implicit restart schemes were first
proposed to compute a few desired eigenvalues of large sparse nonsymmetric matrices
[25]. More recently, they have been exploited to compute stable partial realizations
in the setting of control problems and linear circuit analysis [14, 15]. The aim of
this section is to propose a general implicit restart framework based on the Arnoldi
process. A key feature of the present approach, which differs from existing implicit
restart schemes, is that the integrity of the controllability and observability Arnoldi
equations (4)–(7) is preserved. In contrast, existing methods focus on preserving (5)
and (7), which makes it difficult to establish system theoretic connections between
fm(s) and f(s). In the eigenvalue setting, preserving the integrity of either (4) or (6)
is not essential, since the starting vector is an eigenvector estimate and does not form
part of the problem data. An advantage offered by preserving the Arnoldi equations
is that one may establish computable error expressions that are similar to those of
Theorem 2.1; furthermore, one may demonstrate that the implicitly restarted reduced-
order model may be obtained by effecting low-rank perturbations to the state-space
representation of f(s).

Remark. 3.1. Commonly, implicit restarts refer to restarting the Arnoldi process
with updated starting vectors v1 and w1. In this work, we take a broader inter-
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pretation, so that restarts refer to removing, via oblique projections, all features of
fm(s) that are deemed undesirable in a given application and restarting the (modified)
Arnoldi process while preserving the Arnoldi equations (4)–(7).

Suppose that m steps of the Arnoldi process have been taken and that fm,1(s),
given in (13), is the reduced-order model obtained upon the application of the oblique
projection process in Theorem 2.1. Observe that fm,1(s) is not necessarily stable;

furthermore, similar to a power method, the Arnoldi process engenders an Ĥm whose
eigenvalues approximate those of A with large absolute value. The presence of such
features makes fm,1(s) unsuitable for many practical applications such as circuit sim-
ulation. Furthermore, robust controller design methods based on the small gain the-
orem require that the actual model (in this case f(s)) and the nominal model (in this
case fm,1(s)) have the same number of poles in the closed right-half complex plane
[9, 10]. Since f(s) is stable from the outset, stability of fm,1(s) is required for such

methods. Furthermore, if many eigenvalues of Ĥm approximate those of A with large
absolute value, fm,1(s) is a poor reduced-order model since it is unable to replicate
the low-frequency characteristics of f(s). Suppose that these undesirable features may
be extracted via the application of an additional oblique projection process; namely,
define two full-column rank matrices TL, TR ∈ Rm×r such that TTL TR = Ir, where Ir
is the r× r identity matrix and r < m. Then the desirable portion of fm,1(s) is given
by

fr,1(s)
s
=

[
TTL ĤmTR TTL lm
kmTmTR 0

]
.

The following is referred to as a basis change in the state-space realization of any
rational g(s):

g(s)
s
=

[
A b
c d

]
T→ g(s)

s
=

[
TAT−1 Tb
cT−1 d

]
,

where T is nonsingular. The next result establishes that the projectors TL and TR
applied to fm,1(s) may be combined with the oblique projectors generated in the
course of the Arnoldi process; furthermore, the composite projectors yield a reduced-
order model whose structure is reminiscent of (13).

Proposition 3.1. Suppose that m steps of the Arnoldi process have been taken
and that Tm is nonsingular. Let TR = QRRR and (TTm)−1TL = QLRL be QR decompo-
sitions in which QL, QR ∈ Rm×r are parts of orthogonal matrices and RL, RR ∈ Rr×r
are upper triangular. Define Vr := VmQR, Wr := WmQL, and Tr := WT

r Vr. Then
1. Tr is nonsingular and T−1

r = (QTLTmQR)−1 = RRR
T
L,

2. fr,1(s) may be expressed as

fr,1(s)
s
=

[
T−1
r WT

r AVr T−1
r WT

r b
cVr 0

]
.(15)

Proof. Since TL and TR have full-column rank, RL and RR are nonsingular. Using
the QR decompositions and TTL TR = Ir, Tr = QTLTmQR = (RTL)−1R−1

R , from which
part 1 follows. By Theorem 2.1, fr,1(s) may be expressed as

fr,1(s)
s
=

[
TTL T

−1
m WT

mAVmTR TTL T
−1
m WT

mb
cVmTR 0

]
(16)

s
=

[
RRT

T
L T
−1
m WT

mAVmQR RRT
T
L T
−1
m WT

mb
cVmQR 0

]
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upon substituting TR = QRRR and effecting a basis change using the transformation
RR. Substituting (TTm)−1TL = QLRL into (16) and using part 1 readily establishes
the claim in part 2.

Remark. 3.2. Alternatively, one may apply the transformations TL and TR to the
reduced-order model fm,2(s), given in (14), to yield

fr,2(s)
s
=

[
TTL ĜmTR TTL Tmlm
kmTR 0

]
.

On effecting the QR decompositions TL = QLRL and T−1
m TR = QRRR, one readily

demonstrates that

fr,2(s)
s
=

[
WT
r AVrT

−1
r WT

r b
cVrT

−1
r 0

]
,(17)

where Vr and Wr are defined in Proposition 3.1.
Observe that Vr and Wr continue to remain orthogonal bases to parts of the

controllability and observability subspaces since QR and QL are parts of orthogonal
matrices. From Proposition 3.1, it appears that fr,1(s) may be computed by imposing
a Galerkin condition on the residual of (9). Thus, similar to the arguments leading to
the statement of Problem 2.1, one defines an approximate solution to the first linear
system of (9) of the form fb,r(s) = Vrhr(s); then we consider fr,1(s) = cfb,r(s) as an
approximation to f(s). Similarly, fc,r(s) = gr(s)W

T
r defines an approximate solution

to the second linear system of (9), which leads to an approximation of f(s) given
by fr,2(s) = fc,r(s)b. The functions hr(s) and gr(s) are then computed by imposing
Galerkin conditions as shown by the next corollary. For notational convenience, define
Ĥr := T−1

r WT
r AVr and Ĝr := WT

r AVrT
−1
r .

Corollary 3.2. Suppose that the conditions of Proposition 3.1 are in force.
Then

1. hr(s) =
(
sI − Ĥr

)−1

T−1
r WT

r b if and only if {(sI −A)Vrhr(s)− b} ⊥Wr.

2. gr(s) = cVrT
−1
r

(
sI − Ĝr

)−1

if and only if
{
c− gr(s)WT

r (sI −A)
}
⊥ Vr.

Proof. By direct calculation,

WT
r {(sI−A)Vrhr(s)− b} = (sTr −WT

r AVr)hr(s)−WT
r b

= Tr

{(
sI − Ĥr

)
hr(s)− T−1

r WT
r b
}
.

Part 1 of the corollary is readily established, since Tr is nonsingular. Part 2 is verified
in a similar way.

The approximation to f(s) is then given by cVr(sI − Ĥr)
−1T−1

r WT
r b, which is

fr,1(s) as defined in (15). Since fr,1(s) and fr,2(s) may be computed via the applica-
tion of Galerkin conditions, it is natural to question whether the terms in (15) and
(17) satisfy certain “Arnoldi-like” equations. The development that follows answers
this question affirmatively and shows that this process naturally fits into an implicit
restart framework.

Suppose that QR⊥ is the orthogonal completion of QR so that [QR QR⊥ ] ∈ Rm×m
is an orthogonal matrix. Postmultiplying (5) by [QR QR⊥ ] enables one to express
(4) and (5) as

b = Vm[QR QR⊥ ][QR QR⊥ ]T lm,

AVm[QR QR⊥ ] = Vm[QR QR⊥ ][QR QR⊥ ]THm[QR QR⊥ ](18)

+ṼmH̃m[QR QR⊥ ],
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respectively, which leads to

b = Vrlr + [VmQR⊥ Ṽm]

[
QTR⊥ lm

0

]
,(19)

AVr = VrHr + [VmQR⊥ Ṽm]

[
QTR⊥HmQR
H̃mQR

]
,(20)

where lr = QTRlm and Hr = QTRHmQR. Observe that (20) is the (1,1) block of (18).
Similarly, suppose that QL⊥ is the orthogonal completion of QL so that [QL QL⊥] ∈
Rm×m is an orthogonal matrix. Then postmultiplying (7) by [QL QL⊥ ] enables one
to express (6) and (7) as

cT = Wm[QL QL⊥][QL QL⊥]T kTm,

ATWm[QL QL⊥] = Wm[QL QL⊥][QL QL⊥ ]TGTm[QL QL⊥](21)

+W̃mG̃
T
m[QL QL⊥ ],

respectively, which leads to

cT = Wrk
T
r + [WmQL⊥ W̃m]

[
QTL⊥k

T
m

0

]
,(22)

ATWr = WrG
T
r + [WmQL⊥ W̃m]

[
QTL⊥G

T
mQL

G̃TmQL

]
,(23)

where kTr = QTLk
T
m and Gr = QTLGmQL. Observe that (23) is the (1,1) block of (21).

The key observation is that despite the application of an additional oblique projection
process, (19)–(23) have an Arnoldi-like structure, except for the second term in the
right-hand side of (19) and (22). This leads one to conclude that we may restart the
iterative process with a view to improving the approximation.

3.1. An implicit restart scheme. The objective of this section is to propose
an implicit restart scheme based on the Arnoldi-like equations given in (19)–(23). In
order to effect a restart, consider (19) and (20), where

[VmQR⊥ Ṽm] ∈ Rn×(m−r+1) and

[
QTR⊥HmQR
H̃mQR

]
∈ R(m−r+1)×r.(24)

Suppose that the second term of (24) has (m − r + 1) linearly independent rows;
then the application of (m − r) steps of restart would yield a basis for part of the
controllability space spanned by the columns of [Vr VmQR⊥ ]. This basis is a rotation
of Vm since Vr = VmQR; therefore, [Vr VmQR⊥ ] does not contribute to updating
the reduced order model. Under such circumstances, the approximation errors would
stagnate irrespective of the number of restarts employed. Therefore, for an effective
restart scheme, one selects 2r < m, which will be a standing assumption throughout
this paper. Consider the QR decomposition[

QTR⊥ lm QTR⊥HmQR
0 H̃mQR

]
= Q[ l̃r H̃r],(25)

where [ l̃r H̃r] ∈ R(r+1)×(r+1) is upper triangular and Q ∈ R(m−r+1)×(r+1) is part of
an orthogonal matrix. Then (19) and (20) may be expressed as

b = Vrlr + Ṽr l̃r = [Vr Ṽr]

[
lr
l̃r

]
,(26)



642 IMAD M. JAIMOUKHA AND EBRAHIM M. KASENALLY

AVr = VrHr + ṼrH̃r = [Vr Ṽr]

[
Hr

H̃r

]
,(27)

where Ṽr := [VmQR⊥ Ṽm]Q ∈ Rn×(r+1). The following modified Gram–Schmidt pro-

cess augments the Arnoldi-like equations (26) and (27) to yield a matrix [Vm Ṽm],
which is part of an orthogonal matrix, and an (r + 1) upper Hessenberg matrix

[HT
m H̃T

m]T (i.e., for 1 ≤ j ≤ m, hj+r+2,j = 0). Observe that the first r columns of

[HT
m H̃T

m]T are already available from (27); furthermore, the first 2r + 1 columns of

[Vm Ṽm] are also available prior to the restart. It is thus natural to consider a process
which augments the existing data from dimension r to dimension m. The following
is a modified Gram–Schmidt process that performs this task.

Algorithm 3.1 (an implicitly restarted modified Gram–Schmidt process).
• For j = r + 1, r + 2, . . . ,m,
• w := Avj,

• for i = 1, 2, . . . , r + j,

{
hi,j := wT vi,
w := w − vihi,j ,

• hj+r+1,j := ‖w‖2 and vj+r+1 := w/hj+r+1,j.
Observe that Hm = V TmAVm is satisfied. Furthermore, the associated controlla-

bility Arnoldi equations in (4) and (5) remain in force with Hm, Vm, H̃m, Ṽm, and

lm = [lTr l̃Tr 0]T defined by the implicitly restarted Gram–Schmidt process. These
variables overwrite those computed in the previous restart step. To clarify the struc-
ture, we present an illustrative example in which r = 2 and m = 6. Writing (26) and
(27) as

b = [v1 v2 | v3 v4 v5]


l1
l2
l3
0
0

 , A[v1 v2] = [v1 v2 | v3 v4 v5]


× ×
× ×
× ×
× ×
0 ×

 ,
the following structure is obtained by augmenting these equations to m = 6:

b = [v1 v2 v3 v4 v5 v6]


l1
l2
l3
0
0
0

 =: Vmlm,

A[v1 v2 v3 v4 v5 v6] = [v1 v2 v3 v4 v5 v6 | v7 v8 v9]



× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×


,

⇒ AVm = [Vm Ṽm]

[
Hm

H̃m

]
.
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In order to effect a restart with the observability Arnoldi equations, consider the QR
decomposition [

QTL⊥k
T
m QTL⊥G

T
mQL

0 G̃Tr QL

]
= U [ k̃Tr G̃Tr ],(28)

where [ k̃Tr G̃Tr ] ∈ R(r+1)×(r+1) is upper triangular and U ∈ R(m−r+1)×(r+1) is part of
an orthogonal matrix. Thus, the observability Arnoldi equations may be expressed as

cT = Wrk
T
r + W̃rk̃

T
r and ATWr = WrG

T
r + W̃rG̃

T
r ,(29)

where W̃r = [WmQL⊥ W̃m]U ∈ Rn×(r+1) is part of an orthogonal matrix. One
may now employ the implicitly restarted modified Gram–Schmidt process to augment
(29) and to produce Gm,Wm, W̃m, and km satisfying the Arnoldi equations (6) and
(7). A reduced-order model is then formed following (13) or (14). Suppose that the
undesirable features present in this model may be removed by two full-rank matrices
TL and TR such that TTL TR = Ir, then Proposition 3.1 may be used to extract the
unwanted features by effecting a further state reduction. The restart process may then
be repeated until convergence. The following is an outline of the implicitly restarted
model-reduction algorithm.

Algorithm 3.2 (implicitly restarted model-reduction algorithm).
• Start: Specify m and r such that m > 2r.

1. Perform m steps of the Arnoldi process with (A, b) to find Hm, H̃m, Vm,

Ṽm, and lm.
2. Perform m steps of the Arnoldi process with (AT , cT ) to find Gm, G̃m,

Wm, W̃m, and km.
• Restart: Effect the QR decompositions

TR = [QR QR⊥ ]

[
RR
0

]
and (Tm)−TTL = [QL QL⊥ ]

[
RL
0

]
.

1. Effect the QR decompositions (25) and (28) which define the terms in
(26), (27), and (29).

2. Evaluate the residual errors ; if satisfied, form the reduced-order model
using (15) or (17) and stop; otherwise, continue.

3. Effect m − r implicitly restarted, modified Gram–Schmidt steps using
[lTr l̃Tr ]T , [HT

r H̃T
r ]T , and [Vr Ṽr] to yield lm, [HT

m H̃T
m]T , and [Vm Ṽm].

4. Effect m − r implicitly restarted, modified Gram–Schmidt steps using
[kr k̃r], [Gr G̃r], and [Wr W̃r] to yield km, [Gm G̃m], and [Wm W̃m].

Remark. 3.3. In practice, it is advisable to compute the QR factorizations in step
1 of the restart via the Gram–Schmidt or modified Gram–Schmidt orthogonalization
processes. For full details, including the case that the left-hand sides of (25) and (28)
do not have full-column rank, see [4, 13].

Two elements of Algorithm 3.2 have yet to be discussed: the first addresses the
selection of appropriate TL and TR of the restart step; the second concerns computable
error formulas for step 2 of the restart process. The second is the object of the next
subsection; the first is covered in section 4.

3.2. Theoretical properties. The aim of this section is to provide a theoretical
analysis of the implicit restart algorithm presented in section 3.1.
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To gauge the quality of the reduced-order model as each restart is completed, the
following theorem provides computable expressions for the L∞-norm of the residual
errors.

Theorem 3.3. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and
(27) and (29), respectively. The L∞-norm of the residual errors associated with the
approximate solutions to (9) are given by

‖b− (sI −A)Vrhr(s)‖∞ =

∥∥∥∥[ T−1
r WT

r Ṽr
I

](
l̃r + H̃rhr(s)

)∥∥∥∥
∞
,(30) ∥∥c− gr(s)WT

r (sI −A)
∥∥
∞ =

∥∥∥(k̃r + gr(s)G̃r

) [
W̃T
r VrT

−1
r I

]∥∥∥
∞
.(31)

Proof. Substituting (26) and (27) into the left-hand side of (30) yields

‖b− (sI −A)Vrhr(s)‖∞ =

∥∥∥∥[ lr − (sI −Hr)hr(s)

l̃r + H̃rhr(s)

]∥∥∥∥
∞

=

∥∥∥∥∥
[
−T−1

r WT
r Ṽr l̃r + (Hr − Ĥr)hr(s)

l̃r + H̃rhr(s)

]∥∥∥∥∥
∞

.

Substituting T−1
r WT

r ×(27) into the (1,1) block yields the desired result. The residual
error expression of (31) is derived in a similar way using (29).

Next, we establish properties of the reduced-order model that are reminiscent of
those derived in [18]. We begin by deriving low-rank approximate solutions to (3) by
imposing Galerkin-type conditions on their associated residual errors. Suppose that
the low-rank Gramians have the form Pr = VrXrV

T
r and Qr = WrYrW

T
r for some

symmetric matrices Xr and Yr ∈ Rr×r. The residual error functions associated with
a particular choice of Xr and Yr are then defined by

Rr = AVrXrV
T
r + VrXrV

T
r A

T + bbT , Sr = ATWrYrW
T
r +WrYrW

T
r A+ cT c.

The residual error functions may be factorized by using (26)–(29) to yield

Rr = [ Vr (I−VrT−1
r WT

r )Ṽr](32)

×
[
ĤrXr+XrĤ

T
r +T−1

r WT
r bb

TWr(T
T
r )−1 XrH̃

T
r +T−1

r WT
r bl̃

T
r

H̃rXr+ l̃rb
TWr(T

T
r )−1 l̃r l̃

T
r

]

×
[

V Tr
Ṽ Tr (I−Wr(T

T
r )−1V Tr )

]
,

Sr = [ Wr (I −Wr(T
T
r )−1V Tr )W̃r](33)

×
[
ĜTr Yr + YrĜr + (TTr )−1V Tr c

T cVrT
−1
r YrG̃r + (TTr )−1V Tr c

T k̃r
G̃Tr Yr + k̃Tr cVrT

−1
r k̃Tr k̃r

]

×
[

WT
r

W̃T
r (I − VrT−1

r WT
r )

]
.

The Arnoldi–Lyapunov solvers considered here seek symmetric Xr and Yr such that
the residual Rr and Sr satisfy orthogonality properties with respect to parts of the



IMPLICIT RESTARTS FOR KRYLOV SPACE MODEL REDUCTION 645

controllability and observability subspaces spanned by the columns of Vr and Wr,
respectively. The following theorem determines the low-rank Gramians that satisfy
such orthogonality conditions.

Theorem 3.4. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and

(27) and (29), respectively. Furthermore, suppose that λi(Ĥr) + λ̄j(Ĥr) 6= 0 ∀i, j and

λi(Ĝr) + λ̄j(Ĝr) 6= 0 ∀i, j. Then
1. WT

r RrWr = 0 if and only if

ĤrXr +XrĤ
T
r + T−1

r WT
r bb

TWr(T
T
r )−1 = 0.(34)

Under these conditions,

‖Rr‖F =

∥∥∥∥∥
[
HrXr +XrH

T
r + lrl

T
r XrH̃

T
r + lr l̃

T
r

H̃rXr + l̃rl
T
r l̃r l̃

T
r

]∥∥∥∥∥
F

.

2. V Tr SrVr = 0 if and only if

ĜTr Yr + YrĜr + (TTr )−1V Tr c
T cVrT

−1
r = 0.(35)

Under these conditions,

‖Sr‖F =

∥∥∥∥∥
[
GTr Yr + YrGr + kTr kr YrG̃r + kTr k̃r

G̃Tr Yr + k̃Tr kr k̃Tr k̃r

]∥∥∥∥∥
F

.

3. Xr and TTr YrTr are, respectively, the controllability and observability Gramians
of fr,1(s).

4. TrXrT
T
r and Yr are, respectively, the controllability and observability Gramians

of fr,2(s).
Proof. The proof is similar to the proofs of Theorems 2.3 and 3.2 in [18] and is

omitted.
The following result establishes that the low-rank Gramians Pr and Qr are the

exact Gramians of a pair of perturbed Lyapunov equations. It also gives the ap-
proximations fr,1(s) and fr,2(s) defined in (15) and (17), respectively, as minimal
realizations of various perturbations of f(s).

Theorem 3.5. Suppose that m steps of the Arnoldi process have been completed
and that the controllability and observability Arnoldi equations are given by (26) and
(27) and (29), respectively. Suppose that Pr := VrXrV

T
r and Qr := WrYrW

T
r are

the low-rank approximate solutions to (3), where Xr and Yr satisfy (34) and (35),
respectively.

1. Define the perturbations ∆ = (I−VrT−1
r WT

r ), ∆1 = ∆ṼrH̃rV
T
r , and ∆2 =

WrG̃rW̃
T
r ∆. Then

(A−∆1)Pr + Pr(A−∆1)T + (I −∆)bbT (I −∆)T = 0,(36)

(A−∆2)TQr +Qr(A−∆2) + (I −∆)T cT c(I −∆) = 0.(37)

Furthermore,

‖∆1‖2F =
∥∥∥H̃r

∥∥∥2

F
+
∥∥∥T−1

r WT
r ṼrH̃r

∥∥∥2

F
,

‖∆2‖2F =
∥∥∥G̃r∥∥∥2

F
+
∥∥∥G̃rW̃T

r VrT
−1
r

∥∥∥2

F
,

‖∆‖2F = n− 2r +
∥∥T−1

r

∥∥2

F
.
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2. Define ∆3 := ∆1 +∆2. Then WT
r ∆1Vr =WT

r ∆2Vr =WT
r ∆Vr =WT

r ∆3Vr = 0.
Furthermore,

(A−∆3)Pr + Pr(A−∆3)T + (I −∆)bbT (I −∆)T = 0,

(A−∆3)TQr +Qr(A−∆3) + (I −∆)T cT c(I −∆) = 0.

3. Define f∆i(s)
s
= ( (A−∆i), (I −∆)b, c(I −∆), 0 ) for i = 1, 2, 3. Then

fr,1(s) = fr,2(s) = f∆i(s) ∀s, i = 1, 2, 3.

Proof. Substituting (34) into (32) and rearranging yields (36), while substituting
(35) into (33) and rearranging yields (37). Part 2 follows by direct calculation using
part 1. The proof of part 3 is similar to the proof of Corollary 3.3 in [18] and is
omitted.

The effects of ∆3 and ∆ are to perturb A, b, and c in such a way that the
nonminimal modes of the perturbed system are simultaneously uncontrollable and
unobservable. The perturbation ∆1 to the transition matrix of f(s) yields n − r
uncontrollable modes while the perturbation ∆2 gives rise to n − r unobservable
modes [18].

Observe that ∆1, ∆2, and ∆3 are additive perturbations on the state transition
matrix of f(s) while ∆ is a multiplicative perturbation on the input and output vectors
b and c. It is interesting to observe that despite the fact that ∆1, ∆2, and ∆3 have
different Frobenius norms, each perturbed linear system is a different realization of
the same transfer function.

Although the Arnoldi equations (4)–(7) continue to be satisfied after any number

of restarts, the structure of the variables Hm, H̃m, lm, km, Gm, and G̃m differs from
that required by the Arnoldi process, namely, that

Em :=

[
lm Hm

0 H̃m

]
, Fm :=

[
km 0

Gm G̃m

]
are upper and lower triangular, respectively. Instead, Em and Fm for the restart
scheme are, respectively, r-upper and r-lower Hessenberg (i.e., for 1 ≤ j ≤ m,
(Em)j+r+1,j = (Fm)j,j+r+1 = 0) (see Algorithm 3.2 and Algorithm 3.1 and the sub-
sequent discussion). This implies that the moment-matching property

cAi−1b = cmA
i−1
m bm, 1 ≤ i ≤ 2m(38)

[11], which essentially follows from the triangular structure of Em and Fm, no longer
applies for the implicit restart scheme and an alternative justification of the scheme
is required. In the implicitly restarted model-reduction algorithm in [14, 15], the
authors give an equation similar to (38), relating modified moments of the original
and restarted Lanczos model. Here, we show that (38) is still satisfied, albeit for lower
values of i.

Theorem 3.6. Suppose that Hm, H̃m, lm, km, Gm, and G̃m are output by Algo-
rithm 3.2; define

Am = Hm + T−1
m WT

mṼmH̃m = T−1
m WT

mAVm,(39)

bm = lm = T−1
m WT

mb, cm = kmTm = cVm
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for nonsingular Tm = WT
mVm; and let k be the largest integer satisfying

k ≤ m

r + 1
.(40)

Then

Ai−1b = VmA
i−1
m bm, cAi−1 = cmA

i−1
m T−1

m WT
m, 1 ≤ i ≤ k.(41)

Hence,

cAi−1b = cmA
i−1
m bm, 1 ≤ i ≤ 2k.(42)

Proof. It follows from the r-upper triangular structure of Em that

H̃mH
i−1
m lm = 0, 1 ≤ i ≤ k − 1.(43)

Hence (39) implies that

Hi−1
m lm = Ai−1

m lm = Ai−1
m bm, 1 ≤ i ≤ k.(44)

Repeated evaluation of b, Ab, . . . , Aib using (4), (5), (43), and (44) verifies the first

part of (41). A similar procedure, using Gm, G̃m, and km, verifies the second part of
(41). Finally, (42) follows from (41) upon noting that

cA2i−1b = cAi−1AAi−1b = cmA
i−1
m T−1

m WT
mAVmA

i−1
m Bm

= cmA
2i−1
m bm, 1 ≤ i ≤ k.

Notice that when r = 0 (no restarts), k = m and (42) reduces to (38).
Remark. 3.4. One difficult issue associated with any restart scheme is the choice

of m. Clearly, if m = n− 1, then fm,1(s) = f(s). So the question is how small should
m be to guarantee convergence of fr,1(s) to the balanced truncation of f(s)? Theo-
rem 3.6 states that the restarted process generating fm,1(s) matches fewer moments
than an fm,1(s) based on no restarts. One interpretation is that, without restarts,
fm,1(s) tends to be a good approximation to the high-frequency component of f(s),
while effecting implicit restarts via the stable projection and balanced truncation of
fm,1(s), improves the approximation at low frequencies at the expense of degraded
high-frequency behavior.

Suppose that r is given and that fm,1(s) must match at least a given number of
moments of f(s) at s = ∞. Then (40) and (42) suggest a minimum value of m to
guarantee the moment-matching condition.

4. Stable projection and balanced truncation. The objective of this section
is to suggest transformations TL and TR which enable Algorithm 3.2 to form stable
partial realizations that retain the low-frequency characteristics of f(s).

Suppose that m steps of the Arnoldi process have been completed and that fm(s)
is an unstable partial realization of f(s). The approach proposed here then determines
TL and TR, which effects a stable projection of fm(s). In other words, the application
of TL and TR to fm(s) yields fm+(s), where fm(s) = fm+(s) + fm−(s) in which
fm+(s) is stable and fm−(s) is antistable. For the purposes of the present discussion,
suppose that fm(s) = cm(sI − Am)−1bm, then transform Am to a block-ordered real
Schur form

T1AmT
T
1 = As =

[
A11 A12

0 A22

]
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in which T1 is orthogonal, A11 ∈ Rp×p is stable, and A22 ∈ R(m−p)×(m−p) is anti-
stable. Following this change of basis, the system of first-order differential equations
is described by

ẋ = Asx+ T1bmu, y = cmT
T
1 x.(45)

The next step of the stable projection process is to eliminate the (1,2) block of As by
solving the Sylvester equation A11X−XA22+A12 = 0, which has a solution due to the

inertia properties of A11 and A22; see [8]. Applying the basis change T2 =
[
I −X
0 I

]
to the linear dynamical system in (45) yields

T2AsT
−1
2 =:

[
A11 0
0 A22

]
, T2T1bm =:

[
b1
b2

]
, cmT

T
1 T
−1
2 =:

[
c1 c2

]
.

With this decomposition complete, we conclude that

TL1
:= TT1 T

T
2

[
I
0

]
= TT1

[
I
−XT

]
and TR1

:= TT1 T
−1
2

[
I
0

]
= TT1

[
I
0

]
.

Finally, the stable part of fm(s) is

fm+(s) :=

[
TTL1

AmTR1 TTL1
bm

cmTR1
0

]
= c1(sI −A11)−1b1.

This selection of TL and TR may be used in Algorithm 3.2 to yield an implicitly
restarted model-reduction algorithm that is reminiscent of [14, 15].

Similar to a power method, Krylov subspace methods generate partial realizations
in which the spectrum of Am is known to approximate the outer part of the spectrum
of A. The presence of such eigenvalues contributes little to the low-frequency char-
acteristics of a dynamical model and may be removed without altering the model’s
behavior. It is therefore natural to consider the application of a model-reduction step
to fm+(s) whose purpose is to extract any redundant modes that might be present.
To this end, one resorts to either the square root or the Schur-based algorithms ex-
pounded in [24]. Suppose that the state dimension of fm+(s) is p; then the following
procedure determines the additional transformations, TL2

and TR2
, which extract the

undesirable modes.
Algorithm 4.1 (square root algorithm).
• Calculate the solutions Ps and Qs to the Lyapunov equations

A11Ps + PsA
T
11 + b1b

T
1 = 0 and AT11Qs +QsA11 + cT1 c1 = 0.

• Effect the factorizations Ps = LrL
T
r and Qs = LoL

T
o , and compute the sin-

gular value decomposition ÛΣpV̂
T = LTo Lr, where Σp = diag(σ1, . . . , σp) and

σ1 ≥ · · · ≥ σp.
• Suppose that the first r modes of fm+(s) are to be retained. Then define the

transformations TL2
= LoÛrΣ

−1/2
r ∈ Rr×p and TR2

= LrV̂rΣ
−1/2
r ∈ Rr×p,

where Σr = diag(σ1, . . . , σr) and Ûr and V̂r are the first r columns of Û and

V̂ , respectively.
We could also use the Schur-based algorithm in [24], which would yield different

TL2 and TR2 but would result in a different realization of the same reduced-order
model. In [24], Safonov and Chiang show that the square root and Schur-based
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model-reduction algorithms are equivalent to Moore’s balanced truncation method
[20]. In the present setting, the reduced-order model is given by

fr(s) =

[
TTL2

A11TR2
TTL2

b1
c1TR2 0

]
=:

[
Ar br
cr 0

]
.(46)

In a practical implementation, suppose that fm(s) is an unstable partial realization
that contains several redundant modes. Then, it is natural to combine the stable
projection and balanced truncation processes to form composite transformations that
yield an fr(s) which is both stable and free of redundant modes. Such composite
projectors are given by

TL = TL1TL2 = TT1

[
I
−XT

]
LoÛrΣ

−1/2
r and TR = TR1TR2 = TT1

[
I
0

]
LrV̂rΣ

−1/2
r ,

which may be applied to fm(s) to yield fr(s) in a single step. It is interesting to
observe that an implicit restart scheme may be obtained for any TR and TL provided
that TTL TR = Ir.

The following corollary establishes that the oblique projection methods of this
paper are closely related to balanced truncation, namely, that both methods satisfy
orthogonality conditions with respect to oblique projectors.

Corollary 4.1. Suppose that Ar, br, and cr are defined in (46) and define
hbal(s) = (sI −Ar)−1br and gbal(s) = cr(sI −Ar)−1. Then

(sI −A11)TR2
hbal(s)− b1 ⊥ TL2

and gbal(s)T
T
L2

(sI −A11)− c1 ⊥ TR2
.

Proof. The proof is similar to the proof of Corollary 3.2.

5. Numerical experiments. The purpose of this section is to illustrate, with
the help of two examples, the behavior of the implicitly restarted model-reduction
algorithm presented in sections 3 and 4. The tests reported here were performed on
a Sparc-10 Sun workstation using Pro-MATLAB 4.2 which carries out operations to
a unit round off of 2.22× 10−16.

The first problem is set up with A ∈ Rn×n, where n = 100 and the top left-hand
4× 4 block of A is set to

−0.01 0.1 0 0
−0.1 −0.01 0 0

0 0 −0.1 0.5
0 0 −0.5 −0.1

 ,
while the remaining nonzero elements of A are uniformly distributed in (0,−1) and
are all located on the leading diagonal. Consequently, all the system poles are real
except for four, which are −0.01±0.1j and −0.1±0.5j. The first 10 elements of b and
c are uniformly distributed in [0, 1], while the 90 remaining elements are uniformly
distributed in [0, 1/25]. We take m = 10 and r = 4. The infinity norm of f(s)
may be computed from max|f(jω)| ∀ω ∈ R. Table 1 shows the evolution of the
L∞-norm of the error expressions of (30) and (11), denoted here by Err2 and Err3,
respectively, against the number of restarts. The first column of Table 1 shows Err1,
which denotes the L∞-norm of the error fbal(s) − fr,1(s), where fbal(s) is the rth-
order balanced truncation of f(s). The table indicates that Err2 and Err3 fall in
magnitude as the number of restarts increases; however, as is well known, Galerkin
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Table 1

L∞-error norms associated with the implicitly restarted Arnoldi model-reduction scheme.

Restarts Err1 Err2 Err3 Restarts Err1 Err2 Err3
0 .3245 .7737 .3414 8 .0032 .7284 .0563
1 .1782 .7609 .3158 9 .0026 .7284 .0491
2 .0790 .7294 .2317 10 .0021 .7284 .0493
3 .0360 .7294 .1344 11 .0018 .7284 .0463
4 .0201 .7291 .1013 12 .0015 .7285 .0474
5 .0117 .7287 .0656 13 .0012 .7285 .0457
6 .0069 .7288 .0712 14 .0009 .7285 .0469
7 .0044 .7285 .0607 15 .0007 .7285 .0456

conditions of the type in (10) do not guarantee a nonincreasing evolution of Err2 or
Err3. Note that Err2 stagnates after an initial drop indicating convergence. Our
experience with similar examples indicates that Err1 always tends to zero (for large
enough m), which implies that fr,1(s) converges to fbal(s), although proving this
remains an open question. Observe that Err2 and Err3 do not converge to zero. This
follows from the fact that when approximating f(s) by a stable kth-order model fk(s),
‖f(s)− fk(s)‖∞ is greater than or equal to the (k+1)st Hankel singular value of f(s)
[8].

It is known that for many restart algorithms there exists a value of m below which
convergence of the solution is very slow or not possible [25]. The second example
illustrates that this is also the case for the restart algorithm presented here. The
problem is set up with A ∈ Rn×n, where n = 300. The eigenvalues of A are all
in the open left half plane; the real parts are uniformly distributed in the interval
[−1, 0), while the imaginary parts are randomly distributed in the interval [−5, 5].
b, cT ∈ Rn×1 are random.

Table 2

Evolution of relative L∞-error norms for m = 60.

Restarts 1 2 3 4 5 6 7 8 9
E (%) 64 79 64 68 66 123 67 87 82

Table 3

Evolution of relative L∞-error norms for m = 70.

Restarts 1 2 3
E (%) 333 23 4

Tables 2 to 4 illustrate the evolution of the percentage error E =
‖fr,1(s)− fbal(s)‖∞/‖fbal(s)‖∞ as a function of m and the number of restarts. Here
r = 5 and fbal(s) is the rth-order balanced truncation of f(s) = c(sI − A)−1b. Note
that for m = 60, no convergence occurs; for m = 70, fr,1(s) converges to within 4%
of fbal(s) after three restarts; while for m = 75, convergence is within 0.1% after only
two restarts. This example is typical of our numerical experience. Determining a
least value of m to guarantee convergence is still an unresolved problem and is under
investigation (see Remark 3.4).

6. Conclusions. This paper presents and tests a model-reduction algorithm for
large-scale, stable, linear, and time-invariant dynamic systems. We have developed a
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Table 4

Evolution of relative L∞-error norms for m = 75.

Restarts 1 2
E (%) 4.7 0.1

technique which combines the oblique Krylov subspace projectors with further pro-
jectors in order to obtain stable reduced-order approximate models that are able to
approximate the low-frequency behavior of the dynamic system. We also established
that this technique fits naturally within an implicit restart framework that defines an
iterative procedure able to refine approximations. Exact low-dimensional expressions
for the L∞-norm of the residual errors are also derived. Our numerical experiments
on several large-scale examples indicate that this process converges to the balanced
truncation of the dynamic system; however, formally establishing this claim remains
an open research problem. In place of the Arnoldi process, one may equally employ
the Lanczos algorithm to derive an implicitly restarted scheme for stable partial re-
alization. The derivation of such a scheme follows similar lines to those presented in
this paper, except that in the Lanczos setting the biorthogonality of [Vm Ṽm] and

[Wm W̃m] is enforced [5, 21].
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