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Abstract

We present an algorithm for separating the local gradient information and Lambertian

colour by using 4-source colour photometric stereo in the presence of highlights and shad-

ows. We assume that the surface reflectance can be approximated by the sum of a Lam-

bertian and a specular component. The conventional photometric method is generalised

for colour images. Shadows and highlights in the input images are detected using either

spectral or directional cues and excluded from the recovery process, thus giving more

reliable estimates of local surface parameters.

Index terms: photometric stereo, surface orientation and colour recovery, highlights,

shadows



1 Introduction

The motivation for this paper is the problem of illumination-invariant1 characterisation

of three-dimensional surfaces with unknown reflectivity, which, however, can be assumed

to be well approximated by a Lambertian component plus a specular component.

Characterisation of 3-dimensional surfaces from 2-dimensional images is not an easy task.

The 2-dimensional images depend on variation in both surface reflectance and surface

relief. While the reflectance properties are intrinsic to a surface, the surface relief produces

a pattern of shadings that depends strongly on the direction of the illumination. The

appearance of a 3D surface changes drastically with illumination. It is often useful to

recover some surface parameters that are independent of the illumination direction, for

example, local surface orientation and reflectance.

The photometric stereo (PS) technique [20] uses several images of the same surface taken

from the same viewpoint but under illuminations with different directions. Thus the

changes of the intensities in the images depend only on the local surface orientation,

which can be recovered by combining the information from all images. Let us consider

a surface patch. When imaged under a particular illumination, it produces a camera

intensity value which depends on the properties of the illumination configuration, the

surface reflectance and the surface orientation, according to some photometric equation

(hence the term “photometric stereo”). Having several images of the same surface patch

gives us a system of such equations which can be solved for surface orientation and possibly

some reflectance parameters. For Lambertian surfaces it is enough to have 3 images to

recover both local surface normal and albedo. Various developments of the method were

offered in later years, utilising different reflectance models and assumptions about the

surface (see Section 2 for more details). One of these methods ([3]) suggests using 4

images to detect specularities. Under the assumption of nearly Lambertian behaviour

outside the specularity region, one can exclude a highlighted pixel from consideration,

and recover the local surface gradient from the remaining three pixels.

1Under “illumination-invariant” we understand “illumination direction invariant”, leaving the problem

of spectral illumination invariance outside the scope of this paper.
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We propose a generalisation of an existing greyscale photometric stereo (GPS) technique

for use with colour images. We proceed to show how the method mentioned above is

susceptible to errors in the presence of shadows. We make use of spectral information as

an additional cue for detecting highlights. For the case when the spectral information is

not sufficient for the detection of highlights, an alternative method, based on comparing a

recovered normal with the corresponding specular direction, is presented. As a result, we

propose a combined method for recovering local gradient and colour for 3-dimensional non-

Lambertian surfaces from colour images, capable of coping with shadows and highlights.

This paper is structured as follows. In Section 2 we discuss previous work and relate our

approach with the bulk of surface reconstruction problems tackled by other researchers.

In Section 3 we state our assumptions and establish terms and notation. In Section 4

we describe the linear photometric stereo method for grey-scale images, and generalise it

to colour images. In Section 5 we discuss the effect shadows and highlights have on the

outcome of the linear algorithm. Section 6 is devoted to highlight and shadow detection,

and ways of dealing with them are suggested. Section 7 presents the results of experiments

with synthetic and real data. Conclusions are drawn in Section 8.

2 Previous work

The photometric stereo method has been around for 20 years now, and it has received

an extensive theoretical and experimental treatment. It was conceived by Woodham

[19][20] who first used it to recover local surface orientation. The method was based on

the use of the so called reflectance maps in the form of look-up tables. These tables were

obtained by means of a calibrating sphere made of the same material as that of the imaged

surface, which allowed one to map obtained sets of intensities directly to surface normals.

Since then the idea was extended to recover not only surface orientation but also some

reflectance parameters for a number of reflectance models. In what follows we discuss the

existing PS techniques for both greyscale and colour images.
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Greyscale images The vast majority of the existing body of work in the PS field deals

with greyscale images.

For Lambertian surfaces the photometric equations are linear, which allows one to formu-

late the problem in a matrix form. Inverting a system of linear equations makes it possible

to recover the unknown albedo as well as the gradient from three image intensities for

every surface patch (see Section 4.1). Therefore by using three images of a 3-dimensional

Lambertian surface in the absence of shadows one can successfully separate the surface

shape and the pattern on the surface produced by varying albedo.

In the case of Lambertian surfaces with spatially uniform albedo the system of photometric

equations becomes overconditioned, and the “surplus” information may be used in a

variety of ways, for example, to find outliers [20], or reconstruct unknown illumination

directions and strengths [18].

A large amount of research is devoted to the recovery of reflectance parameters (of some

particular reflectance model) along with the local gradient. Estimation of the reflectance

parameters can be performed locally (provided we have a sufficient number of images),

and therefore such algorithms are suitable for surfaces with spatially variable reflectance.

Nayar, Ikeuchi and Kanade [12] applied PS using a so called hybrid reflectance model.

Tagare and deFigueiredo [17] developed the theory of photometric stereo for the class

of m-lobe reflectance maps. Their research was continued by Kay and Caelly [8] who

investigated the problem from a practical point of view, applying non-linear regression to

a large number of input images.

The above methods recover both surface orientation and reflectance parameters but they

require quite a lot of images, and the algorithms are fairly complicated. Since many non-

Lambertian surfaces exhibit near-Lambertian behaviour outside their regions of specular-

ity, it is a very attractive option to apply the linear algorithm, developed for Lambertian

surfaces, to surfaces with non-Lambertian reflectance, and treat highlights as deviations

from the Lambertian law. This technique was proposed by Coleman and Jain [3], who

used the fourth image to detect and exclude highlights. We use a modification of this

method in this paper, and discuss it in more detail later.
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Colour images The information in the colour image of a Lambertian surface illumi-

nated by a single light source is redundant since the photometric equations for individual

colour bands are linearly dependent. An efficient way to use this redundancy is to perform

a conventional PS method using a single colour image of a Lambertian surface under a

complex illumination rather than three greyscale images [5][6][4][13]. The surface should

be illuminated by several light sources which are spectrally distinct and their directions do

not lie in the same plane. This method is called Shape-from-Colour. In [7] it was applied

to the task of face recognition. Kontsevich et al [10] considered a similar approach.

Christensen and Shapiro [2] introduced the method of colour photometric stereo (CPS)

for surfaces with an arbitrary reflectance. The method is a generalisation of [19], and

also uses look-up tables. The disadvantage of this method is that the surface should

be either uniformly coloured, or its colours should form distinct separable clusters in

the colour space, which significantly restricts the choice of acceptable surfaces. Another

disadvantage is the need for a preliminary calibration. On the plus side, this method is

not restricted by any specific reflectance model.

According to the dichromatic reflection model [9], a general reflectance function can be

modelled as the sum of a matte (Lambertian, body) and a specular (surface) component.

Incorporating spectral information into conventional Shape-from-Shading techniques gives

a welcome advantage. See, for example, Lee and Bajcsy [11], who used a spectral differ-

encing algorithm to detect specularities from multiple images. They, however, varied the

pose of the object rather than the illumination.

Assuming a dichromatic reflection model, Schlüns and Wittig [15] also used colour in-

formation to develop a colour PS technique for non-Lambertian surfaces without pre-

calibration. They attempted to recover the surface parameters directly from the three

input colour images using colour histograms. They worked out the illumination and body

chromaticities directly from the histogram, and then decomposed the image pixels into

linear combinations of matte and specular components. This method was not tried on

real surfaces. In an ideal case all image pixels lie on a plane spanned by the chromaticity

vectors of the body and the illumination colours. Such pixels indeed are easy to decom-
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pose into linear combinations according to the dichromatic reflection theory. If, however,

histograms are not planar, the decomposition coefficients are not reliable. In real surfaces

there are always variations in the colour, and there are always errors, so histograms are

rarely planar. Another difficulty is presented by saturated pixels. They appear when the

irradiance of a surface facet exceeds the capacity of image sensors, and the pixel becomes

white. A white pixel can only be decomposed uniquely, thus all saturated pixels yield the

same decomposition. In real pictures highlights often are saturated, and in this method

the highlighted areas will be recovered as flat patches.

The contribution of this paper Our ultimate goal is to describe 3-dimensional sur-

faces in a way that is invariant to the direction of illumination. We assume that a surface

is not necessarily Lambertian, and that the reflectance parameters may vary along the

surface. We do not assume any prior knowledge about the surface, so we can not use

preliminary calibration. We also want to keep the algorithm practical and easy to imple-

ment, therefore the number of images in a photometric set should be kept relatively low.

For these reasons the 4-source PS method proposed by Coleman and Jain [3] is a rather

appealing option.

We use colour rather than greyscale images, because for non-Lambertian surfaces the

spectral content of the images gives an additional cue for the detection of specularities.

Usually, to detect highlights in colour images by spectral difference, some global tech-

nique is employed, which often involves building colour histograms of the input images

(e.g. [15]). We, on the other hand, compare colour pixels locally, for each surface facet

individually. This allows us to consider rough surfaces with spatially variable reflectance

(i.e. surface textures). However, for surfaces whose colour is close to the colour of the il-

luminant (e.g. grey surfaces in white light), the spectral difference method does not work.

For such surfaces we propose an alternative technique which compares the recovered nor-

mals with specular directions. This method is less reliable than the spectral difference

method, but it also gives good results.
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3 Assumptions, terms and notation

We assume that both camera and light source are far away from the surface, so the

viewing direction and illumination direction are constant across the surface. We choose

the coordinate system so that the image plane coincides with the xy plane, and the z axis

coincides with the viewing direction. Then the surface can be described by a 2D height

function z = S(x, y).

For every point on the surface we can define its gradient components: p ≡ ∂S
∂x

, q ≡ ∂S
∂y

,

and the normal unit vector n2:

n ≡ 1√
p2 + q2 + 1

(p, q,−1)T

We assume that the surface in question can be approximated by a collection of flat patches

(each corresponding to an image pixel). Then for each surface patch a local normal n

refers to its slope with respect to the camera-based coordinate system.

We do not assume smoothness or even integrability of the surface. Each surface patch is

considered in isolation from the others, thus enabling us to apply the algorithm to fairly

rough surfaces. However, we assume that the roughness of the surface manifests itself at

scales larger than the pixel resolution, so we assume that each surface patch of pixel size

is smooth.

The illumination is described by vector L which points from the surface towards the

illumination source. Illumination vector L can be represented as the product of unit

vector l which defines the illumination direction, and a scalar µ, proportional to the

illumination strength, so that L ≡ µl. If we have several illumination sources, we denote

them using a superscript: L1, . . . ,LK, where K is the number of light sources. We assume

that all the illuminants have the same spectral content, but their strengths may vary. The

case of spectrally different illumination requires different treatment and is not considered

in this paper.

In this work we consider four different sources at directions such that no three of them

lie in the same plane. Additional requirements to the illumination set-up are discussed in

2Throughout the paper small bold letters refer to unit vectors
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Appendix A.

A pixel, obtained by a camera with A sensors in each cell, can be represented by a vector

in an A-dimensional colour space. A colour pixel, obtained by the kth illuminant, is

denoted by Ik = (Ik
1
, . . . , Ik

A). A grey-scale pixel, obtained under the kth illuminant, is

denoted by Ik
0
.

The notion of Lambertian colour we use in this paper incorporates not only the surface

reflectance properties, but also the spectral properties of the illumination, and the sensi-

tivity of the camera sensor. Thus one should keep in mind that the recovered “colour”

depends on the illumination and the camera used for experiments.

Suppose that the surface is illuminated by light with spectral distribution µE(λ), where

µ is a parameter proportional to the strength of the light. The Lambertian surface

reflectance function is (l ·n)R(λ) (where l is the illumination direction, and (·) represents

the dot product of two vectors), and the sensitivity function of the αth camera sensor is

Qα(λ). Then the value recorded by the αth sensor is:

Iα =
∫ ∞

−∞
µE(λ)(l · n)R(λ)Qα(λ)dλ = (L · n)

∫ ∞

−∞
E(λ)R(λ)Qα(λ)dλ (1)

The factor Cα ≡ ∫ ∞
−∞ E(λ)R(λ)Qk(λ)dλ does not depend on the geometry of the scene, and

we refer to vector C = (C1, . . . , CA)T as the “body colour”. For a more rigorous treatment

of the subject see, for example, [4]. When talking about greyscale images, we have only

one equation (1), and we shall use the term “albedo” for ρ ≡ ∫ ∞
−∞ E(λ)R(λ)Q(λ)dλ, where

Q(λ) is the sensitivity of the camera sensor. Note that factor ρ is proportional to the true

surface albedo in the case of a white illuminant, and flat camera spectral response.

4 Photometric Stereo for Lambertian surfaces

4.1 GPS for Lambertian surfaces

Let us consider a Lambertian surface patch with albedo ρ and normal n, illuminated in

turn by three illumination sources with directions L1, L2, and L3. In this case we can
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express the intensities of the obtained (greyscale) pixels as:

Ik
0

= ρ(Lk · n), where k = 1, 2, 3. (2)

We stack the pixel intensities to obtain the pixel intensity vector I0 = (I1

0
, I2

0
, I3

0
)T .

We also stack the illumination vectors row-wise to form the illumination matrix [L] =

(L1,L2,L3)T . (The square brackets are used throughout the paper to denote matrices).

Then (2) could be rewritten in matrix form:

I0 = ρ[L]n (3)

If the three illumination vectors Lk do not lie in the same plane, then matrix [L] is

non-singular and can be inverted, giving:

[L]−1I0 = ρn

Since n has unit length, we can estimate both the surface normal (as the direction of the

obtained vector) and the albedo (as its length). If we have more than three input images,

the illumination matrix [L] is not square and cannot be inverted directly. Following the

standard Least Square Error procedure, we can recover the albedo and the normal as:

ρn = ([L]T [L])−1[L]T I0

Extra images allow one to recover the surface parameters more robustly.

4.2 CPS for Lambertian surfaces

Let us now assume that we have 3 colour images of the same Lambertian surface from

the same viewpoint, illuminated in turn by 3 illumination sources, which are described by

the illumination matrix [L]. The intensity triplets I1, I2, and I3, produced by a surface

patch (under each of the 3 illumination arrangements), are described by:

Ik = (Ik
1
, Ik

2
, Ik

3
)T = (Lk · n)C

where vector C is the colour of the surface patch, C = (Cr, Cg, Cb), in the sense we discussed

earlier. Let us denote the scalar product (Lk · n) by sk, so that we can form a “shading”
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vector S = (s1, s2, s3)T = [L]n, which shows the dependence of image intensities on the

strength and direction of illumination. If we stack the pixel vectors row-wise to obtain

the intensity matrix [I] = (I1, I2, I3)T , we can write:

[I] =







I1

1
I1

2
I1

3

I2

1
I2

2
I2

3

I3

1
I3

2
I3

3





 =







s1Cr s1Cg s1Cb

s2Cr s2Cg s2Cb

s3Cr s3Cg s3Cb





 = SCT (4)

Note that while the kth row of matrix [I] is the kth input pixel Ik, its lth column is the

intensity vector Il for the lth colour band. Equation (4) describes the intensity matrix in

the ideal, noiseless case. However, in real data there is always a certain degree of noise,

and the observed intensity matrix differs from the “ideal” matrix. We want to find such

estimates of n and C for which the error between their matrix product on the right hand

side of equation (4) and the observed matrix [I] is minimal. This can be done by applying

the Least Square Error technique, which results in the desired estimates for colour and

shading vectors being the principal eigenvectors of matrices [I]T [I] and [I][I]T respectively.

Intuitively these estimates can be interpreted as follows. For a Lambertian surface patch

the three colour pixels corresponding to it are collinear in the RGB space, and differ only

by a scalar factor, the shading of the patch under a particular illumination. Introduced

errors may disturb the collinearity, therefore we use Principal Component Analysis to find

their principal direction. The principal direction gives us the chromaticity3 of the body

colour.

By determining the chromaticity of the body colour, and projecting all input pixels on the

principal colour line, we reduce the problem to the grey-scale case, where the projections

play the role of grey-scale intensities. Applying the GPS algorithm to this intensity vector,

we get the optimal estimation of the surface gradient and the norm of C.

This method can be easily extended to more than 3 input images, say, M images. We

estimate the surface chromaticity using all M colour pixels by finding the principal eigen-

vector of the corresponding colour correlation matrix. Using this chromaticity, we produce

M “intensities” by projecting all pixels on the principal colour line. These intensities are

then used as the input for the appropriate GPS method.

3The chromaticity is the unit vector, collinear with body colour in the colour space
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5 The problem of highlights and shadows

If the algorithm of Section 4.2 is applied to a triplet which has a highlight or a shadow,

the recovery will be affected: the recovered colour will appear different than it would in

the absence of highlights and shadows, and the recovered normal will lean more towards

the light source which produced the highlight, or away from the source which produced a

shadow.

The method proposed by Coleman and Jain [3] uses 4 images of the same surface to detect

highlights in the absence of shadows. This is done by comparing the albedos recovered

from all four possible triplets of pixels, under the assumption that the specularity regions

do not intersect. If the albedos differ significantly, it should be due to a highlight. The

three largest albedos must be affected by the highlight, therefore the triplet producing

the smallest albedo contains only the Lambertian component, and is used for recovery.

However, many natural surfaces produce cast and self-shadows when illuminated by di-

rectional light. The variation of the above method, proposed by Solomon and Ikeuchi

[16], takes self-shadows into consideration. Solomon and Ikeuchi considered a unit hemi-

sphere of surface normals, illuminated by all four illuminants at once. The hemisphere

was naturally divided into regions: those illuminated by all four illuminants, by three il-

luminants, and only by two illuminants. Different strategies were suggested for detecting

specularities and local surface recovery for each of the regions. Their algorithm effectively

used self-shadows as an aid to local gradient recovery.

This method has, however, several shortfalls. First of all, it excludes cast shadows. Cast

shadows will be interpreted by the algorithm as self-shadows. The gradient of a self-

shadowed facet is restricted, whereas the gradient of a cast-shadowed facet has no restric-

tions at all, and using erroneous restrictions leads to an incorrect gradient reconstruction.

The second problem which prevents us from using this method is that there is no indica-

tion as to how to detect shadows. In real images, shadows are rarely perfectly black, so

they cannot be identified easily by simple thresholding. The shadow value depends on the

strength and direction of illumination, so there is always a range of shadow values even for
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surfaces with spatially uniform albedo. For surfaces with varying albedo the uncertainty

in shadow detection is even bigger: shadow values in bright areas may be brighter than

non-shadows in dark areas.

Both highlights and shadows are unexpected changes in pixel intensities, the only differ-

ence being that highlights elevate the affected value, and shadows lower it. Let us consider

a surface patch with albedo ρ and normal n. Under a 4-source image configuration (and

for grey images) this patch gives rise to four pixel values, Ik, k = 1, . . . , 4, one in each

image:

I{1} = (I2, I3, I4)T I{2} = (I3, I4, I1)T

I{3} = (I4, I1, I2)T I{4} = (I1, I2, I3)T (5)

Each triplet I{u} has illumination matrix [L]{u} associated with it, which is made up from

the corresponding illumination vectors. Using the algorithm from Section 4.2, we obtain

four recovered vectors T{u} =
[

[L]{u}
]−1

I{u}. If all values are non-shadowed Lambertian,

the recovered vectors should be identical. Suppose, however, that one of the values is not

a non-shadowed Lambertian (without loss of generality, let it be I4). Then:

I4 = ρ(n · L4) + ε

If I4 is a highlight, ε is positive. If I4 is a self-shadow, the scalar product (n · L4) is

negative, and ε is positive, because I4 ≥ 0. If I4 is a cast shadow, then ε is negative.

Let us now compute T{u}:

T{1} ≡
[

[L]{1}
]−1

I{1} = ρn + ε
[

[L]{1}
]−1

(0, 0, 1)T

T{2} ≡
[

[L]{2}
]−1

I{2} = ρn + ε
[

[L]{2}
]−1

(0, 1, 0)T

T{3} ≡
[

[L]{3}
]−1

I{3} = ρn + ε
[

[L]{3}
]−1

(1, 0, 0)T

T{4} ≡
[

[L]{4}
]−1

I{4} = ρn

Comparing the various T{u}, we can see that the difference in the recovered vectors

depends only on the value and the sign of ε. For fixed ε the recovered albedos will exhibit

the same variance either they were affected by shadows or by highlights. Therefore one can
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not distinguish between highlights and shadows using variance in the recovered albedos

as the only cue. Nevertheless, since highlights appear under rather specific circumstances,

we have several other cues for separating shadows from highlights.

6 Detection of highlights and shadows

We assume that shadows and highlights can be treated as disturbances in non-shadowed

Lambertian photometric quadruples. We also assume that surface reflectance can be

modelled adequately by the dichromatic reflection model.

6.1 Identifying quadruples unaffected by shadows and highlights

In the 3-dimensional world any 4 vectors are linearly dependent. So any 4 illumination

vectors Lk are also linearly dependent, i.e. there are real coefficients ak, k = 1, . . . , 4, such

that:

a1L
1 + a2L

2 + a3L
3 + a4L

4 = 0

If we multiply both sides of this vector equation by a local surface normal n and albedo

ρ, we obtain:

a1ρ(L1 · n) + a2ρ(L2 · n) + a3ρ(L3 · n) + a4ρ(L4 · n) = 0

This is equivalent to:

a1I
1 + a2I

2 + a3I
3 + a4I

4 = 0 (6)

In other words, linear dependence of the illuminant vectors leads to the same linear

equation for the corresponding pixel intensities, if the Lambertian assumption holds.

We can rewrite equation (6) in vector form:

a · I = 0

where a ≡ (a1, a2, a3, a4)
T . This means that any non-shadowed Lambertian quadruple

of pixel intensities is perpendicular to a, i.e. for a specific illumination configuration all

12



non-shadowed Lambertian quadruples form a hyperplane in the 4-dimensional intensity

space, no matter what albedo and normal the corresponding surface facets have.

The hyperplane is defined by the coefficients vector a, which could be computed directly

from the known illumination vectors, or, in the case when the illumination configuration

is unknown, by using the Least Square Errors approximation, provided, of course, that

the number of quadruples affected by shadows and highlights is comparatively small.

Note that the value a · I is exactly (up to the sign) equal to the error ε we saw in the

previous section. Therefore we propose a simpler version of the Coleman-Jain method,

where we detect large values of ε directly from intensity values rather than from large

variance in the recovered albedos.

For colour images the same relationship is true for each colour band. However, there could

be weaker and stronger colour bands, therefore we compare the values of projections of

the input colour pixels along the principal colour line rather than use the actual values

in each colour band separately.

6.2 Highlight detection using colour

One of the important cues for distinction between highlights and shadows is the colour of

the input pixels.

According to the dichromatic reflection theory [9], a highlighted pixel I can be decomposed

into the sum of the matte (body) component C and specular (surface) component CS:

I = C + CS = mc + mSw (7)

where c is the chromaticity of the body colour, w is the chromaticity of the illuminant, and

m and mS are geometric scaling factors, or strengths of the corresponding components.

If we consider highlights as deviations from the Lambertian law, we can use the specular

strength mS to measure the “specular” error.

We estimate the surface chromaticity c using the method of Section 4.2. We can uniquely

decompose I along c and w, obtaining:

mS =
(I ·w) − (I · c)(c · w)

1 − (c · w)2
(8)
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We can detect highlights by an appropriate thresholding of mS: having chosen a threshold

TC , we declare that the brightest pixel is a highlight if mS calculated by (8) exceeds TC .

Note that though we attempt to decompose a highlighted pixel, we do not use the de-

composition for recovery as in [15]; we use it only to detect deviation from body colour.

6.3 An alternative solution

The method described above works rather well when the colour of the surface and the

incident light are distinctly different. However, if the difference between chromaticities of

the body colour and the incident light is small, then the variation in pixel colour due to

highlighting becomes indistinguishable from the variation due to the imaging process. In

terms of equation (8) this means that the denominator is getting close to zero, and the

spectral difference algorithm for highlight detection is not applicable.

Then we must use an alternative solution. We define for each light source with direction

lk its specular direction vk:

vk =
lk − z

|lk − z|
where z is the unit vector directed along the z axis. This is the direction with which

the surface normal should coincide in order to reflect light specularly towards the camera.

Having identified a quadruple as problematic, we exclude the brightest pixel (as a possible

highlight) from consideration, and reconstruct the surface colour and local gradient using

the three darkest pixels. It can be shown (see Appendix B) that if there is a perfect

shadow in the triplet, then the recovered normal will be forced onto the shadowline of

the corresponding source. Brightening the shadow lifts the recovered normal towards

the source. Therefore if the reconstructed normal direction is close to the corresponding

specular direction and is sufficiently far from the shadowlines of the other light sources,

we conclude that the brightest pixel is indeed a highlight. We measure the closeness of

the recovered normal and the specular direction by their dot product, and make decision

by thresholding its value.

Notice, however, that a highlighted pixel is not always the brightest in the quadruple (if,

for example, the intensity of the source which produces the highlight is lower than one
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of the other sources). Therefore to determine potentially highlighted or shadow pixels,

we should normalise their values by dividing them by the corresponding illumination

strengths. However, since such normalisation amplifies errors in dimly lit images, we

cannot use the normalised values for reconstruction purposes. We use the original un-

normalised values for that.

6.4 Which method to use?

The colour difference method is more reliable than the alternative method, so it should

be given preference in situations where it is applicable. To decide which method to

use, we need to compare the chromaticities of the body colour and the incident light. We

determine whether they are close or not by calculating and appropriately thresholding the

square of chromatic distance D2 ≡ 1− (c ·w)2. The threshold TD depends, in particular,

on the level of camera noise and is chosen empirically over several surfaces with different

chromatic characteristics.

If D2 exceeds TD, the colour of the surface and the illumination are sufficiently differ-

ent, and we apply the spectral difference method to highlight detection, otherwise the

alternative method should be applied.

6.5 Summary of the algorithm

We present now the full algorithm for 4 light sources (see Figure 1).

1. Construct the input matrix [I] of size 4× 3 by stacking the pixel values Ik as rows.

2. Compute the colour correlation matrix [Q] = [I]T [I]. Compute its normalised prin-

cipal eigenvector c. Project all 4 colours that correspond to the same pixel along

the direction of c, and thus define a single grey value for each pixel, J = [I]c.

3. For each quadruple of pixel values compute the “Lambertian error” εL ≡ (J · a)2 to

decide whether it contains a highlight or a shadow.

If εL ≤ TL:
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Figure 1: Principal scheme of the algorithm

3.1. Apply the photometric stereo algorithm for a set of 4 grey images using

all available information, as described in Section 4.1, to derive the local

gradient vector and surface albedo ρ.

If εL > TL:

3.2. Measure the chromatic difference D2 between the surface colour and the

colour of the illumination.

If D2 ≥ TD: Apply the method of Section 6.2 to determine

whether the quadruple contains a highlight or not.

If D2 < TD: Apply the method of Section 6.3 to determine

whether the quadruple contains a highlight or not.

3.2.1. If the quadruple contains a highlight, use the 3 darkest com-

ponents of vector J to recover the local surface normal and the

albedo according to the algorithm of Section 4.1.

3.2.2. If the quadruple does not contain a highlight, conclude that

it must contain a shadow, and use the 3 brightest components
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Figure 2: Number of detected pixels as a function of the threshold: (a) for “Lambertian”

error (b) for spectral difference

of vector J to recover the local surface normal and the albedo

according to the algorithm of Section 4.1.

4. In all cases the local colour is recovered as ρc

Note that the algorithm can be simplified: we can always perform a recovery using only

the three brightest pixels except when there are highlights, thus skipping the stage of

detecting the “problematic” quadruples.

6.6 Threshold choice

An important design issue is the choice of the threshold values we use. Thresholds TL,

TC and TD must be chosen empirically according to guidelines given in Section 7.1. The

value of threshold TN can be determined analytically.

Thresholds TL, TC and TD: Experimental evaluation showed that thresholds TL and

TC depend on the level of noise in the images. This dependence is demonstrated in

the experimental section with synthetic data. Further, it turned out that threshold TD

depends on the choice of threshold TC and the level of noise [1]. To demonstrate the

effect of these thresholds on the algorithm, we plot here the number of picked problematic

quadruples as a function of TL for several sets of real data (Fig. 2a). The values were

divided by 2552 to avoid dealing with large numbers. For real data the ground truth is not

known, and so we can not tell whether the detected quadruples are indeed problematic.
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However, for all surfaces the number of detected points drops sharply until TL ≈ 0.02 −

0.04, and then stabilises. Note that the algorithm is fairly robust to the choice of TL as

long as TL is larger than 0.02. In the results presented in Section 7.2 we used TL = 0.03. In

a similar way, in Fig.2b we plot the number of pixels, classified as highlights, as a function

of threshold TC . For our experiments in Section 7.2 we chose TC = 50 and TD = 0.01.

Threshold TN : This threshold is used to compare the direction of the recovered normal

with the specular direction. We label a pixel as highlighted if the normal reconstructed

from the other three pixels is close to the corresponding specular direction. We measure

this closeness using the dot product of the normal and the vector of the specular direction.

Thresholding the dot product defines the width of a possible specularity region. We need

to exclude the possibility of misclassification which can be of two kinds:

1. A highlighted patch misclassified as shadowed. This happens when the specularity

cone is too narrow.

2. A shadowed patch misclassified as highlighted, i.e. the cone is too wide.

To achieve an adequate trade-off, we need to consider several factors which can affect the

choice:

1. The overlapping of specularity cones associated with different lighting directions.

2. The closeness of the possible specularity region and the shadow lines from other

illumination sources.

3. The effect of brightening of shadows.

Under the assumption that all shadows are black, the thresholds which separate a spec-

ularity region from the shadow lines of the other sources take care of both cast and self

shadows: as already mentioned, a perfectly black shadow forces the recovered normal to

fall on the corresponding shadow line, lifting it for the case of self-shadows, and lowering it

for cast shadows (see Appendix B). Therefore for an arbitrary illumination configuration

the width of a specular cone will be defined by the minimum distance between a specular
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direction and the shadow lines of the rest of the illuminants. It is necessary that none of

the specular directions lies in the shadow of another source. The sufficient condition for

such an illumination is discussed in Appendix A.

The perfectly black shadows do not present much of a problem anyway, since they could be

detected by merely thresholding the intensity value. The biggest problem is the detection

of brightened shadows, whose intensity could be quite high. This effect may appear due

to secondary illumination, from the environment and/or neighbouring parts of the (non-

convex) surface. The degree of secondary illumination depends among other things on

the illumination direction, roughness and surface albedo etc., and it can not be easily

modelled. Brightening of the shadows elevates the recovered vector, moving it away

from the shadow line and towards the specular direction. Therefore the threshold value

TN should “pad” the specularity region securely from such elevated recovered vectors.

Appendix C suggests a strategy for choosing the threshold for an arbitrary acceptable

set-up.

In Appendix D we consider the thresholding values for a cross-like illumination set-up,

where the 4 illumination sources have the same elevation angle 4, θ, and are positioned

as if at the corners of a square. According to this calculation, in this specific case the

threshold value TN must be chosen to be:

TN = max





1 + T1

2
,

√

1 + sin θ

2



 .

7 Experimental results

Figure 3: The synthetic input images with A = 0.3 and n = 200

4The elevation angle of the illumination is the angle between the illumination direction and the horizon.

19



7.1 Experiments with synthetic images

Synthetic images are used for evaluation of the algorithm, showing its advantages and

limitations. We have rendered a two-coloured sphere under 4 illuminants (Fig. 3). We

used the Phong reflectance model [14] and rendering with the same coefficients for both

halves. The top half of a sphere has orange colour (Ctop = (230, 128, 50)T) and the bottom

one is grey (Cbottom = (180, 180, 180)T), so we can test both variations of the algorithm.

In one of the images we added a “cast shadow”. We assume the illumination is white.

The illumination matrix is:


























0 cos π
4

sin π
4

cos π
4

cos π
3

sin π
4

cos π
3

sin π
3

0 −0.6 cos π
3

0.6 sin π
3

− cos π
3

0 sin π
3



























so that we have illuminants with different strengths, different elevation angles, and they

are not arranged in a cross-like configuration. The Phong model adds a specular term

in the form of an A cosn Φ component to the Lambertian model, where Φ is the angle

between the surface normal and the specular direction. We performed experiments with

A = 0.3 and 0.15, and n = 200, 100 and 50. In addition, we assumed a component

of secondary illumination from the zenith, of strength f times the strength of the main

illumination in each image, and additive Gaussian noise of standard deviation σ in all

images.

Problematic quadruples detection and thresholds The first series of experiments

is intended to investigate the role of a threshold in the detection of problematic quadruples

(section 6.1). For given model parameters (i.e. the reflectance parameters A, n, level of

noise and secondary illumination) the images of the sphere were rendered. Then for

each threshold value we calculated the proportion of undetected problematic quadruples,

and the proportion of misclassified non-problematic quadruples. Figure 4 shows typical

results for a noiseless and noisy cases. One can clearly see the trade-off between the false

positives and false negatives even in the noiseless case. For noisy conditions the proportion
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Figure 4: Proportion of undetected problematic quadruples (solid line) and misclassified

non-problematic quadruples (dashed line) as a function of a threshold value TL. (a) for

noiseless Lambertian case (b) for Lambertian case with f = 0.1, and σ = 10 (c) for the

case with reflectance parameters A = 0.3, n = 200, and noise parameters f = 0.1, σ = 10

of misclassified quadruples of both kinds grows for any pre-set threshold.

Assessment of colour differencing method To assess the performance of highlight

detection using colour, we rendered several spheres with different body colour under

white light. Fig. 5 presents results for spheres with C1 = 255(1, 0, 0)T and C2 =

255(1, 0.8, 0.8)T . As before, each time we plotted two lines: one shows the proportion

of Lambertian pixels misclassified as highlights (solid line), and the other - the proportion

of highlighted pixels misclassified as Lambertian (dashed line) as a function of the value

TC by which we threshold the specularity strength mS of a pixel. Fig. 5a presents a

typical result for the noiseless case. There is a whole range of values TC between 1 and

10 where we have no errors of either kind even when the body and illumination colours

are close. However, in the presence of noise we start misclassifying both highlights and

Lambertian pixels. Fig. 5b shows the performance of the highlight detection algorithm

on noisy images of the sphere with body colour C1. Finally, when the angle between the

illuminant and the body colours gets more narrow, the classification is almost random

(see the two straight lines on Fig. 5c, which shows the results for the sphere with body

colour C2).

Overall performance Both the straightforward linear algorithm and the proposed

algorithm were applied to each set of images to evaluate the two algorithms.
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Figure 5: Proportion of misclassified Lambertian pixels (solid line) and misclassified high-

lights (dashed line) as a function of a threshold value TC

secondary standard deviation of noise

illumination 0 1 2.5 5 7.5 10

0 0.101 0.108 0.115 0.167 0.291 0.427

1/100 0.109 0.115 0.120 0.178 0.301 0.435

1/50 0.117 0.123 0.131 0.201 0.330 0.458

1/30 0.143 0.154 0.169 0.264 0.391 0.498

1/20 0.272 0.284 0.308 0.393 0.480 0.556

1/10 0.565 0.575 0.585 0.615 0.648 0.675

Table 1: Fraction of pixels with erroneously reconstructed colour recovered by the pro-

posed algorithm

We measure the colour error as the length of the vector difference between the original

and the recovered colour vectors. The error in normals is measured as 1 − nrecovered · n.

Figure 6 presents some example results for the case A = 0.3 and n = 200. The detected

errors in the results of the two algorithms have been scaled in the same scale so that the

same grey tone in the different panels indicates the same level of error. The recovered

surface normals are used to produce an image just for visualisation purposes.

The results of the experiments with A = 0.3 and n = 200 are presented in tables 1-4. The

tables show the proportion of pixels for which the absolute errors in the recovered values

exceed some predetermined acceptance value (0.05 for colour, 0.005 for normals). We

chose this error measure rather than conventional mean and standard deviation of error

distribution because the artefacts in the recovered parameters are localised and rather
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secondary standard deviation of noise

illumination 0 1 2.5 5 7.5 10

0 0.284 0.285 0.287 0.303 0.371 0.463

1/100 0.289 0.290 0.291 0.311 0.382 0.474

1/50 0.296 0.297 0.300 0.329 0.406 0.497

1/30 0.316 0.318 0.325 0.378 0.459 0.535

1/20 0.411 0.417 0.433 0.482 0.534 0.588

1/10 0.644 0.645 0.646 0.656 0.670 0.688

Table 2: Fraction of pixels with erroneously reconstructed colour recovered without high-

light and shadow correction

secondary standard deviation of noise

illumination 0 1 2.5 5 7.5 10

0 0.070 0.080 0.083 0.095 0.127 0.189

1/100 0.078 0.084 0.087 0.098 0.128 0.193

1/50 0.079 0.087 0.088 0.098 0.131 0.191

1/30 0.080 0.088 0.090 0.100 0.133 0.195

1/20 0.083 0.091 0.093 0.103 0.137 0.202

1/10 0.093 0.099 0.102 0.119 0.171 0.242

Table 3: Fraction of pixels with erroneously reconstructed normals recovered by the pro-

posed algorithm

different in nature, and therefore their error distributions are far from Gaussian. If, for

example, highlights are not detected correctly, we get big errors in a small area, but

elsewhere the algorithm might work reasonably well.

The errors in the results of the proposed algorithm which are due to strong secondary

illumination are mostly concentrated in the grey part of the sphere, where the areas

shadowed in more than one image are sometimes falsely classified as highlights. Secondary

illumination also leads to larger overall errors because the actual illumination differs from

the one given by the illumination matrix (this is also a problem for the straightforward
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standard deviation of noise

0 1 2.5 5 7.5 10

0 0.260 0.261 0.262 0.266 0.274 0.294

1/100 0.261 0.261 0.262 0.267 0.274 0.294

1/50 0.262 0.262 0.263 0.267 0.276 0.295

1/30 0.264 0.264 0.265 0.267 0.277 0.298

1/20 0.266 0.266 0.267 0.269 0.278 0.303

1/10 0.272 0.272 0.273 0.277 0.298 0.334

Table 4: Fraction of pixels with erroneously reconstructed normals recovered without

highlight and shadow correction

algorithm). Errors due to high levels of noise also induce some misclassification. The

results of the series of experiments with different parameters of the Phong reflectance

model are similar to these: predictably, they worsen slightly for more diffuse surfaces

when the width of the specularity regions grows. They also get slightly worse if the

strength of the specular component gets higher. For example, for the zero noise and

zero secondary illumination case, the fraction of the pixels with wrongly recovered colour

instead of being 0.101 is 0.110 (A = 0.3, n = 50), 0.123 (A = 0.3, n = 100), 0.115

(A = 0.15, n = 100), and 0.173 (A = 0.15, n = 50). All other recorded errors for all cases

remain in similar levels for those presented in the tables.

7.2 Experiments with real images

We have applied the algorithm described above to a number of test surfaces with a variety

of reflectance properties. Here we present just a small selection of them in order to demon-

strate various aspects of the algorithm and its limitations: tomatoes, walnuts, pebbles1,

and pebbles2. Fig. 7 presents the input images, one from each set of four test images.

Images were taken by Kodak DC 290, distance from camera to surface 1m, illumination

configuration cross-like with elevation angle 60 degrees. These images have been chosen

because they demonstrate different aspects of the algorithm when we have shadows and
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Figure 6: Results with and without shadow and highlight corrections. The recovered

normals are presented rendered with the first illumination direction of Figure 3.

highlights. For example, the tomato images have very high levels of secondary illumina-

tion. Both tomatoes and walnuts have colour quite different from grey, whereas both sets

with pebbles are grey. In addition all these images have several parts that are shadowed

in more than one of the captured images.

Figs. 8 and 9 present the results obtained by the CPS algorithms with (upper row) and

without (lower row) highlights and shadow correction. Fig. 8 shows the recovered colour

maps for all surfaces with and without correction. Fig. 9 shows the reconstructed surfaces

rendered under one of the original illuminants. Note from Fig. 5 that in the presence

of noise it is impossible to define a threshold that allows us to detect all highlight and
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(a) (b) (c) (d)

Figure 7: Input images, one from each set of four images: (a) tomatoes, (b) walnuts, (c)

pebbles1, (d) pebbles2

Figure 8: Colour maps, recovered with and without correction

shadow pixels without errors. Due to this fact we observe the rings in the tomatoes images

shown in Figs. 8 and 9. Although the results of both algorithms have wrongly recovered

parts, the proposed algorithm copes much better with highlights and shadows than the

ordinary CPS. In addition these results show the places where the proposed algorithm

fails, as expected.

8 Conclusions

Shadows and highlights in the input images pose a problem for surface reconstruction.

We propose a modification of a well-known photometric stereo algorithm, which uses 4

images to detected highlights and shadows in the input images, and, excluding them from

the recovery process, allows one to obtain more reliable estimates of surface parameters.

Using pixel-wise estimates of colour, we are able to detect highlights locally. Then the
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Figure 9: Rendered surfaces, recovered with and without correction

shadows can be detected as disturbances of linearity on the input quadruples of pixels.

In the greyscale case, when there are no spectral cues for highlight detection, we resolve

to comparing the recovered normals with shadowlines and specular directions. Compar-

ing the recovered normals with the shadowlines can be considered as a variation of the

thresholding process. However as it uses both the local surface albedo and the illumina-

tion strength in the process of recovery, it does not rely on a global shadow thresholding

value.

The performance of the proposed algorithm may be improved if one uses some post-

processing technique to reduce “pepper noise” which appears when we apply thresholding

on various stages of the algorithm. The method fails in the greyscale case for pixels which

are shadowed in more than one images and are affected by secondary illumination. To

deal with misclassifications of this kind, one may detect multiple shadows in a quadruple,

using an already derived local shadowing threshold.

A Sufficient condition for acceptable illumination con-

figuration

To be able to use the closeness of a recovered normal to a specular direction for highlight

detection in an arbitrary illumination configuration, we should make sure, first, that no

three of the illumination vectors lie in the same plane, and second, that no specular

27



direction lies in the shadow of any other illuminant.

Consider, for example, illumination and specular directions of the ith illumination source:

li = (cos φi cos θi, sin φi cos θi, sin θi)

where θi the the elevation angle of the ith source, and φi is its tilt (azimuth) angle. Then

the corresponding specular direction is:

vi =
li − z

|li − z| =
(cos φi cos θi, sin φi cos θi, 1 + sin θi)
√

( cos2 θ2
i + 1 + 2 sin θi + sin2 θi)

=
(cos φi cos θi, sin φi cos θi, 1 + sin θi)

√

2(1 + sin θ)

For any i and j we want the scalar product li · vj > 0, that is, no specular direction lies

in the shadow of any other source:

li · vj =
1

√

2(1 + sin θj)
×

(cos φi cos θi cos φj cos θj + sin φi cos θi sin φj cos θj + sin θi(1 + sin θj)) =

1
√

2(1 + sin θj)
(cos θi cos θj cos(φi − φj) + sin θi(1 + sin θj)) > 0

Since the denominator is positive and all elevation angles are in (0, π/2], we can rewrite

the inequality as:

sin θi(1 + sin θj) > − cos θi cos θj cos(φi − φj)

Provided that none of the two sources is from zenith (in which case the inequality is

satisfied anyway), we can divide both sides by the cosines:

tan θi

1 + sin θj

cos θj

> − cos(φi − φj)

The inequality lj · vi > 0 should be treated in the same way.

Notice that:

tan θi

1 + sin θj

cos θj

> tan θi tan θj and
1 + sin θi

cos θi

tan θj > tan θi tan θj

Therefore the following inequality is sufficient:

tan θi tan θj > − cos(φi − φj)

This inequality can be tightened for specific illumination set-ups.
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B Recovered vector and the shadow line

We shall show that for any illumination configuration if there is a perfectly black shadow(s)

in a pixel triplet, then the vector recovered by the PS method falls on the shadow line(s)

of the corresponding source(s).

Consider an illumination configuration which consists of 3 lights with directions L1, L2,

and L3, and has an illumination matrix [L] associated with it. Let one of the pixels

produced under this configuration (say I1) be perfectly black: I1 = 0. Then applying the

linear GPS algorithm we obtain the recovered vector T:

T = [L]−1(0, I2, I3) = ρn − ρ(L1 · n)[L]−1(1, 0, 0)T

[L]−1(1, 0, 0)T is the first column of matrix [L]−1. Let us now multiply both sides of this

equation by L1:

(L1 ·T) = ρ(L1 · n)
[

1 − (L1 · [L]−1(1, 0, 0)T )
]

By definition of the inverse matrix the term in square brackets is equal to zero, and

therefore the recovered vector T indeed falls on the shadow line of L1. If there are two

perfectly black shadows, the recovered vector falls on the intersection of the corresponding

shadow lines.

C The strategy for choosing threshold TN in an arbi-

trary acceptable illumination configuration

If we have only one defect in the quadruple (the brightest pixel as a highlight or the

darkest pixel as a shadow), then we only have to distinguish between these two cases.

Let us assume that the brightest pixel was obtained under the ith illuminant, and the

darkest pixel under the jth illuminant. We want to define a specularity cone around vi

such that it is still sufficiently far from the shadowline of lj. Consider angle γ between

these directions:

γ = arccos(vi · lj)

29



Then the angle between the vi and the closest point on the shadowline is π/2−γ (consider

the plane which contains both vi and lj). The angle, which defines the width of the

specularity cone, should not exceed π/2 − γ. To make the “padding”, necessary for

brightened shadows, we use parameter τ ∈ (0, 1), which depends on the brightness of

shadows and may be “tweaked” during calibration. The width of the specularity cone

can be defined then as β = τ(π/2 − γ), widening when τ grows and narrowing when it

diminishes. The thresholding value TN (i, j) can then be defined as

TN(i, j) = cos β = cos(τ(π/2 − γ)) = cos(τ(π/2 − arccos(vi · lj))) (9)

However, this method is prone to misclassification if there is more than one shadow, so it

may be beneficial to try and detect the second shadow (from the second darkest pixel) in

a similar way (with, perhaps, smaller τ as this shadow will be brighter). If we have more

than one shadow in the quadruple, the method is inapplicable, and recovering surface

parameters from the brightest three pixels is probably the best estimate we can get.

D The bounding conditions for TN in the cross-like

configuration

If we measure the closeness of a normal and a specularity direction in terms of their dot

product, then thresholding this value is in fact determining a cone of directions which can

possibly produce highlights. We want this cone not to intersect the shadow lines of the

other illuminants.

Let us suppose that our illuminants are arranged in a cross-like configuration. Let us

also suppose that the brightest pixel is obtained under L4, and we reconstruct the normal

using L1, L2, and L3. Let us denote the reconstructed normal by n ≡ (nx, ny, nz)
T .

Possible specular cone and the shadow line of the opposite light source The

widest specularity cone which still does not intersect the shadow line of L2 is such that

the cone touches the shadow line, i.e. intersects it at exactly one point. We should also
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make sure that the cone is outside the shadowed region. To ensure that, we must require

that the angle between v4 and L2 is less than π/2. It is easy to see that θ must exceed

π/6: The angle between v4 and the vertical is exactly half of the angle between L4 and

the vertical. Therefore the angle between v4 and L2 can be expressed as:

3

2

(

π

2
− θ

)

<
π

2
⇔ θ >

π

2
− 2

3

π

2
=

π

6

To find the threshold T1 defining such a cone, we should solve a system of equations so

that the system has exactly one solution:











n · v4 = T1

n · L2 = 0
||n|| = 1

(10)

It is easy to see that v4 is:

v4 =
L4 − z

|L4 − z| =
(− cos θ, 0,−[1 + sin θ])
√

cos2 θ + (1 + sin θ)2

=
(− cos θ, 0,−[1 + sin θ])

√

2(1 + sin θ)
(11)

Then we can rewrite (10) as:















−nx cos θ − nz(1 + sin θ) = T1

√

2(1 + sin θ)

nx cos θ − nz sin θ = 0
n2

x + n2

y + n2

z = 1

Solving the first two equations, we get:

nx = −
T1

√

2(1 + sin θ)

2 sin θ + 1
tan θ nz = −

T1

√

2(1 + sin θ)

2 sin θ + 1

Substituting into the third equation we get:

2T 2

1
(1 + sin θ)

(2 sin θ + 1)2
(tan2 θ + 1) + n2

y = 1

For this equation to have a unique solution the normal vector must be coplanar with

vectors v4 and L2, i.e. we must require ny = 0. Then:

2T 2

1
(1 + sin θ)

(2 sin θ + 1)2
(tan2 θ + 1) = 1

Solving for T 2

1
:

T 2

1
=

(2 sin θ + 1)2

2(1 + sin θ)

1

tan2 θ + 1
=

(2 sin θ + 1)2

2(1 + sin θ)
cos2 θ
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T1 should be positive, therefore:

T1 =
(2 sin θ + 1)

√

2(1 + sin θ)
cos θ (12)

Thus if the dot product between a normal and the specular direction exceeds T1, we are

sure that the normal cannot be self-shadowed by the opposite illumination source.

Possible specular cone and the shadow line of the neighbouring light source

In a similar way we can determine the threshold which ensures that we do not pick facets

that are self-shadowed under the neighbouring light sources.

For the sake of simplicity let us find this threshold for L1. It will be exactly the same for

L3 due to the symmetry of the system.

To find the threshold T2, we use the same approach as before. It is easy to see that (v4 ·L1)

is always positive, that is, the specularity cone cannot lie inside the shadowing region.

We need to solve the following system of equations in such a way that it has exactly one

solution:










n · v4 = T2

n · L1 = 0
||n|| = 1

(13)

This system becomes:














−nx cos θ + nz(1 + sin θ) = T2

√

2(1 + sin θ)

ny cos θ − nz sin θ = 0
n2

x + n2

y + n2

z = 1

Solving the first two equations in terms of nz, we get:

nx =
nz(sin θ + 1) − T2

√

2(1 + sin θ)

cos θ
ny = nz tan θ

Upon substitution to the third equation we obtain:

(

nz(sin θ + 1) − T2

√

2(1 + sin θ)
)2

cos2 θ
+ n2

z

sin2 θ

cos2 θ
+ n2

z = 1

(

nz(sin θ + 1) − T2

√

2(1 + sin θ)
)2

+ n2

z(sin
2 θ + cos2 θ) = cos2 θ

which leads to:

n2

z

[

1 + (1 + sin θ)2
]

− 2nzT2

√

2(1 + sin θ)(sin θ + 1)
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Figure 10: Thresholding values T1 and T2.

+(T 2

2
2(1 + sin θ) − cos2 θ) = 0

This is a quadratic equation with respect to nz. For T2 to be the desired threshold, this

equation has to have only one solution, that is its discriminant D should be zero:

D = 2T 2

2
(sin θ + 1)3 −

[

1 + (1 + sin θ)2
] [

T 2

2
2(1 + sin θ) − cos2 θ

]

= 0

Solving this equation, we get:

2T 2

2
(1 + sin θ) = cos2 θ

[

1 + (1 + sin θ)2
]

Therefore the threshold T2, which ensures that we do not pick up normals that could be

self-shadowing under the neighbouring illuminant, is:

T2 =
cos θ

√

2(1 + sin θ)

√

1 + (1 + sin θ)2 (14)

T2 never exceeds T1 for acceptable elevation angles (see Fig. 10).

References

[1] S. Barsky. Surface Shape and Colour Reconstruction using Photometric Stereo. PhD

thesis, School of Electronics and Physical Science, University of Surrey, UK, 2003.

33



[2] P.H. Christensen and L.G. Shapiro. Three-dimensional shape from colour photomet-

ric stereo. International Journal of Computer Vision, 13(2):213–227, 1994.

[3] E.N. Coleman and R. Jain. Obtaining 3-dimensional shape of textured and specular

surfaces using four-source photometry. Computer Graphics and Image Processing,

18:309–328, 1982.

[4] M. Drew and M. Brill. Color from shape from color: a simple formalism with known

light sources. J. Opt. Am. Soc. A, 17(8):1371–1381, August 2000.

[5] M.S. Drew. Shape from color. Technical Report CSS/LCCR TR 92-07, Simon Fraser

School of Computer Science, 1992.

[6] M.S. Drew. Photometric stereo without multiple images. Human Vision and Elec-

tronic Imaging, SPIE/IS&T, 3016:369–380, February 1997.

[7] G.D. Finlayson, J. Dueck, B.V. Funt, and M.S. Drew. Colour eigenfaces. In IEEE

3rd International Workshop on Image and Signal Processing, Manchester, England,

November 4-7 1996.

[8] G. Kay and T. Caelly. Estimating the parameters of an illumination model using pho-

tometric stereo. Graphical Models and Image Processing, 57(5):365–388, September

1995.

[9] G.J. Klinker. A Physical Approach to Color Image Understanding. A K Peters, 1993.

[10] L.L. Kontsevich, A.P. Petrov, and I.S. Vergelskaya. Reconstruction of shape from

shading in colour images. J. Opt. Soc. Am. A, 11(3):1047–1052, March 1994.

[11] S.W. Lee and R. Bajcsy. Detection of specularity using color and multiple views.

Image and Vision Computing, 10:643–653, 1992.

[12] S.K. Nayar, K.Ikeuchi, and T.Kanade. Determining shape and reflectance of hy-

brid surfaces by photometric sampling. IEEE Trans. on Robotics and Automation,

6(4):418–431, August 1990.

34



[13] A.P. Petrov and G.N. Antonova. Resolving the color-image irradiance equation.

Color Research and Application, 21:97–103, 1996.

[14] B.T. Phong. Illumination for computer generated pictures. Communications of the

ACM, 18(6), 1975.
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