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Abstract— In this paper we consider a model–based fault de-
tection and isolation problem for linear time–invariant dynamic
systems subject to faults and disturbances. We use an observer
scheme that cancels the system dynamics and defines a residual
vector signal that is sensitive only to faults and disturbances. We
then design a stable fault isolation filter such that the H∞–norm
of the transfer matrix function from disturbances to the residual
is minimized (for fault detection) subject to the constraint that
the transfer matrix function from faults to residual is equal to a
pre–assigned diagonal transfer matrix (for fault isolation). The
optimization of disturbance decoupling is accomplished via the
help of linear matrix inequalities. A numerical example is also
presented to illustrate the algorithm.

I. INTRODUCTION

Model–based fault detection and isolation (FDI) schemes
exploiting analytic redundancy have received increasing at-
tention in the literature and applications [6], [18] and [11].
The schemes involve the design of an observer which effec-
tively cancels the (nominal) process dynamics and provides
a residual signal that is sensitive only to disturbances,
plant/model mismatch (often recast as disturbances) and
faults. The filter design objective is then to reduce the
sensitivity to disturbances and/or plant/model mismatch as
well as isolating faults. There are two main approaches for
achieving the detection objective, namely, exact and almost
disturbance decoupling [21]. In the former, the aim is to
decouple the residual signal from disturbances exactly, while
in the latter, the transfer matrix from disturbances to the
residual signal is required to be small in either the H2 or
H∞ norm sense. For the purpose of isolating faults, in both
cases, the transfer matrix function from faults to residual is
required to be diagonal.

Patton and Chen considered left and right eigenvector
assignment [17] and Chen et al. treated the robust FDI prob-
lem by using an unknown input observer with disturbances
exactly decoupled in the state estimation error [2]. Although
these techniques can achieve disturbance decoupling, their
isolation ability is restricted. In most perfect decoupling and
isolation cases, solvability conditions are generically difficult
to be satisfied. Hence, almost decoupling has been widely
investigated recently through H∞ techniques [21]. Frank and
Ding developed a matrix factorization method to obtain an
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optimal fault detection filter [8] and Sadrnia et al. utilized
a Riccati equation iteration method to construct an extended
H∞ filter [22]. Using these techniques, the decoupling prob-
lem can be transformed to a sensitivity optimization problem,
which seeks to increase the sensitivity of the residual to faults
and simultaneously reduce the sensitivity to disturbances
and plant/model mismatch. However, isolation is employed
indirectly in the above methods through the use of banks of
observers. This makes it hard to deal with multiple faults
(where faults might occur simultaneously).

It is desirable to consider decoupling disturbances approx-
imately and isolating multiple faults using a single observer.
See [9] for a discussion of this issue. In this contribution, we
construct an FDI observer such that the H∞–norm of the
transfer matrix function from disturbances to the residual
is minimized, with the constraint that the transfer matrix
function from faults to residual is equal to a pre–assigned
diagonal transfer matrix. Necessary and sufficient condition
in the square case and sufficient condition in the non-
square case for the existence of such an observer are given.
Various versions of this problem have been considered in the
literature. The problem of designing a stable diagonalizing
filter has been considered in [14] where a partial solution was
given (when the number of outputs is equal to the number
of faults), however, the influence of the disturbances was
not considered. In [4], the problem of limiting the influence
of the disturbances was considered, although the resulting
equations were nonlinear and the solution was suboptimal.
Here, we design a stable multiple faults isolating filter and
minimize the effect of disturbances (using the H∞–norm as
a measure) on the residual using linear matrix inequalities
(LMI). The LMI techniques used in [12] for fault detection
could also be modified for fault isolation under certain
assumptions. In this work, we remove these assumptions and
present the work in a more general setting.

This work is organized as follows. We review the residual
signal generation for almost detection and isolation filter in
Sections II and III. In Section IV we divide the isolation
problem into two cases and give existence conditions for
their solution. The disturbance decoupling problem is treated
using LMI techniques in Section V. Section VI gives a jet
engine example to validate the approach. Finally, Section VII
concludes the paper.

The notation we use is fairly standard. The set of real
(complex) n×m matrices is denoted by Rn×m (Cn×m). For
A ∈ Rn×m we use the notation AT to denote the transpose.
The set of complex numbers is denoted by C. The open left
half of the complex plane is denoted by C− and the closed
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right half of the complex plane is denoted by C̄+. The i–
th eigenvalue of A ∈ Cn×n is denoted by λi(A). For a
symmetric matrix A ∈ Rn×n, A > 0 (A < 0) denotes that A
is positive definite (negative definite), that is, λi(A) > 0, ∀ i
(λi(A) < 0, ∀ i). The notation A = diag (a1, . . . , an)
denotes that A is a diagonal matrix with diagonal entries
a1, . . . , an. The n × n identity matrix is denoted as In and
the n×m null matrix is denoted as 0n,m with the subscripts
dropped if they can be inferred from context.
R(s)m×p denotes the set of all m × p proper, real–

rational matrix functions of s. Lm×p
∞ denotes the space

of m × p matrix functions with entries bounded on the
extended imaginary axis. The subspace Hm×p

∞ ⊂ Lm×p
∞

denotes matrix functions analytic in the closed right–half
of the complex plane. A prefix R denotes a real–rational
function, so that RHm×p

∞ denotes the set of all m×p stable
real–rational matrix functions of s.

For G(s) ∈ RHm×p
∞ , we define

‖G‖∞=
√

sup
ω∈R

max
i

λi (G(−jω)T G(jω))·

If G(s) s=(A,B, C, D)∈RHm×p
∞ with m≥ p, then G(s) is

called co–outer if G(s) has no zeros [1] in C̄+, that is, if the
matrix pencil [

A−μI B
C D

]
has full column rank for all μ ∈ C̄+ (equivalently, if G(s)
has a left inverse in RHp×m

∞ [5]). The matrix A∈Rn×n is
called stable if λi(A) ∈ C−, ∀ i. The pair (A,C) is called
detectable if there exists a real matrix L such that A + LC
is stable. The pair (A,C) is detectable if the matrix pencil[

AT −μI CT
]T

has full column rank for all μ ∈ C̄+.

II. PROBLEM FORMULATION

A faulty linear time-invariant (LTI) dynamic system sub-
ject to disturbances can be modeled as

ẋ(t) = Ax(t) + Bdd(t) + Bff(t) + Bu(t),
y(t) = Cx(t) + Ddd(t) + Dff(t) + Du(t),

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny are the
state, input and output vectors, respectively, and d(t) ∈ Rnd

and f(t) ∈ Rnf are the disturbance and fault vectors,
respectively. Here, Bf ∈ Rn×nf and Df ∈ Rny×nf are
the component and instrument fault distribution matrices,
respectively, while Bd ∈ Rn×nd and Dd ∈ Rny×nd are
the corresponding disturbance distribution matrices [7], [6].
For simplicity, structured model uncertainties are recast as
additive disturbances [17]. We assume that the system has at
least as many outputs as potential faults, i.e, ny ≥ nf , which
is a general assumption in fault diagnosis. Since sensor faults
can be recast by actuator faults [3], [15], [16], [24], we may
also assume, without loss of generality, that Df = 0 .

A standard filter–based FDI approach to generate a resid-
ual signal r(t) is the use of system duplication to cancel the

the input dynamics [6]. Define[
Gd(s) Gf (s)

] s=
[

A Bd Bf

C Dd 0

]
∈ R(s)ny×(nd+nf ).

Then the residual dynamics are

r(s) = F (s)[Gd(s)d(s) + Gf (s)f(s)], (1)

where F (s) ∈ R(s)nf×ny is a free stable post-filter to be
designed.

The residual dynamics can be generated using a state–
observer framework as

˙̂x(t) = Ax̂(t) + Bu(t) − L (y(t) − Cx̂(t) − Du(t)) ,

r(t) = H(y(t) − Cx̂(t) − Du(t)),

where x̂(t) ∈ Rn is the observer state and r(t) ∈ Rnf is
the residual signal. Here L ∈ Rn×ny and H ∈ Rnf×ny are
the observer and residual gain matrices, respectively, and are
to be determined. Define the state estimation error signal as
e(t) = x(t)− x̂(t). It follows that the residual dynamics are
given by

ė(t) = (A + LC)e(t) + (Bd + LDd)d(t) + Bff(t),
r(t) = HCe(t) + HDdd(t).

Taking Laplace transforms, r(s) = Trf (s)f(s)+Trd(s)d(s),
where[

Trd(s) Trf (s)
] s=

[
A+LC Bd+LDd Bf

HC HDd 0

]
, (2)

are the transfer matrices from faults and disturbances to
residuals, respectively. Then a calculation shows that r(s) =
F (s)[Gd(s)d(s) + Gf (s)f(s)], where

F (s) s=
[

A + LC L
HC H

]
∈ R(s)nf×ny , (3)

so that[
Trd(s) Trf (s)

]
= F (s)

[
Gd(s) Gf (s)

] · (4)

To guarantee the existence of at least one L such that A+
LC is stable, we assume that the pair (A,C) is detectable. In
fact, with this assumption, we show next that there is no loss
of generality in assuming that A is stable. If A is unstable
and (A,C) is detectable, there exists L0 such that A + L0C
is stable. A simple calculation now shows that[

Trd(s) Trf (s)
]

= F̄ (s)
[

Ḡd(s) Ḡf (s)
]

where[
Ḡd(s) Ḡf (s)

] s=
[

A + L0C Bd + L0Dd Bf

C Dd 0

]
and where

F̄ (s) s=
[

A + L0C + (L − L0)C L − L0

HC H

]
.

The result now follows by identifying A := A+L0C, Bd :=
Bd+L0Dd and L := L−L0. Note, however, that fault detec-
tion and isolation for unstable systems may be problematic
in practice due to modeling uncertainties [13].
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We consider the following detection and isolation problem.
Problem 2.1: Find a stable filter F (s) such that the opti-

mum
γo = inf

Trf =To

F (s)∈H
nf ×ny
∞

‖Trd‖∞ (5)

is achieved, where

To = M(sI − Λ)−1 (6)

is a preassigned stable diagonal transfer matrix and

Λ = diag(λ1, . . . , λnf
) ∈ Rnf×nf , λi < 0, ∀i,

M = diag(m1, . . . ,mnf
) ∈ Rnf×nf , |mi| > 0, ∀i. (7)

It is evident that the first constraint Trf = FGf = To is
equivalent to FĜf = I , where

Ĝf = Gf (sI − Λ)M−1 = sGfM−1 − GfΛM−1

s=
[

A ABfM−1

C CBfM−1

]
−

[
A −BfΛM−1

C 0

]
s=

[
A ABfM−1 − BfΛM−1

C CBfM−1

]
. (8)

Hence, Problem 2.1 is equivalent to the following
Problem 2.2: Find a stable filter F (s) such that the opti-

mum
γo = inf

FĜf =I

F (s)∈H
nf ×ny
∞

‖FGd‖∞ (9)

is achieved.
Remark 2.1: The equality constraint FĜf = I follows

from the isolation condition, which constructs a directional
residual to achieve fault isolation. Correspondingly, the min-
imization of Trd in the sense of H∞-norm is interpreted as
the detection or disturbance decoupling condition.

Remark 2.2: Problem 2.2 is known as an almost distur-
bance decoupling problem in fault diagnosis [21], where
disturbance signatures do not need to be perfectly removed
from the residual. It is also classified as an optimal approx-
imate decoupling problem in [9], where fault response are
specified as explicit equality constraints instead of inequal-
ities constraints. This setup allows an easy implementation
of isolation functions.

III. STABILITY CONDITION

Before the design of a residual generator, we give the
existence condition of a stable isolation filter first.

Lemma 3.1: Suppose ny ≥ nf . Then the following are
equivalent:

1) There exists a stable fault isolation filter F (s).
2) Ĝf is co–outer.
3) CBf has full column rank and Gf (s) has no finite

zeros in C̄+.
Proof.

1→2 The result follows from the fact that Ĝf is stable
(from (8) and the assumption that A stable), and the
constraint in (9):

FĜf = I. (10)

2→1 Follows directly from the definition of co–outer func-
tions.

2↔3 Let ρ(μ) be defined as

ρ(μ) := rank
([

A−μI (ABf−Bf Λ)M−1

C CBf M−1

])
(11)

For any finite μ ∈ C̄+, ME := M(μI −Λ)−1 has full
rank since Λ is stable and so

ρ(μ)=rank
([

A−μI (ABf−Bf Λ)M−1

C CBf M−1

][
I −Bf E

0 ME

])
=rank

([
A−μI Bf

C 0

])
.

It follows that Ĝf and Gf (s) have the same finite
zeros in C̄+ and the conclusion follows. Note the fact
that, due to the nonsingularity of M , CBf having full
column rank is equivalent to CBfM−1 having full
column rank. �

Remark 3.1: Part (3) in Lemma 3.1 gives a test indepen-
dent of Λ and could be used in the beginning of the design.

Remark 3.2: The condition that CBf has full column
rank seems to be restrictive, however, it is necessary for the
form of To we have chosen (e.g., diagonal with first order
diagonal elements). Other choices of To will require different
corresponding conditions. In this work we have opted for the
simplest choice of To(s), e.g., fixed, diagonal and with first
order diagonal elements. An issue for further research is to
optimize the choice of To(s).

Remark 3.3: In the case that ny > nf , then, generically,
Ĝf has no zeros and is co–outer. Thus when the number of
outputs is larger than the number of faults, we expect the
fault isolation problem to be solvable.

IV. FAULT ISOLATION FILTER DESIGN

Next, we derive an optimal fault isolation filter for two
cases: the square case (ny = nf ) and the general case (ny >
nf ). We will show that, the result in the square case can be
generalized to the general case via solving a left inverse of
a transfer matrix in state space.

Theorem 4.1: Suppose ny = nf . Then there exists an
optimal filter F (s) which solves Problem 2.2 if and only
if Ĝf is an outer function. Furthermore, if a feasible F (s)
exists, then the corresponding observer gains in the form of
(3) are given as

L = −(ABf − BfΛ)(CBf )−1, (12)

H = M(CBf )−1. (13)
Proof. Firstly, we show that the optimization objective in

(9) can be achieved if and only if F = Ĝ−1
f exists and stable.

(⇒) According to Lemma 3.1, the existence of a feasible
F implies the existence of a stable Ĝ−1

f .
(⇐) If Ĝ−1

f is stable, then (9) is equivalent to

γo = inf
FĜf =I

F (s)∈H
nf ×ny
∞

∥∥∥FĜf Ĝ−1
f Gd

∥∥∥
∞

= inf
∥∥∥Ĝ−1

f Gd

∥∥∥
∞

,
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where the optimum is achieved when F = Ĝ−1
f .

Secondly, the selection of L and H can be verified via
comparing (3) with

F = Ĝ−1
f

s=
[

A−RF M−1SF C −RF M−1SF

M(CBf )−1C M(CBf )−1

]
s=

[
A−RF (CBf )−1C −RF (CBf )−1

M(CBf )−1C M(CBf )−1

]
,

where RF = ABf − BfΛ and SF = (CBfM−1)−1.
Finally, an outer Ĝf implies that Ĝf has full rank over

the extended imaginary axis and that Ĝf )−1 is stable, which
in turn imply that CBf is nonsingular and A − (ABf −
BfΛ)(CBf )−1C is stable. �

In the square case, the almost isolation condition can
be easily verified by calculating the inverse of Ĝf . Note,
however, that the FI filter is unique and no degrees of
freedom can be used to reduce the effects of disturbances.
It is natural to generalize the result to the non–square case
(ny > nf ). However, the left-inverse of Ĝf is not unique
and degrees of freedom may be exploited in an observer-
based form. Hence, in the rest of this section, we consider
a state-space solution of FĜf = I , in which the freedom
in the choice of the solutions for L and H will be used to
optimize disturbance decoupling.

Lemma 4.1: Suppose that ny > nf . Then the isolation
condition (10) is satisfied if there exist L and H such that

LCBf = BfΛ − ABf

HCBf = M. (14)

Furthermore, with the assumption Ĝf is co-outer, the feasible
L and H are given by

L = L1 + RL2 (15)

H = H1 + SL2, (16)

where L1 = (BfΛ − ABf )D#, L2 = I − DD#, H1 =
MD# and D# = (DT D)−1DT is the Moore–Penrose
generalized inverse of D = CBf . In addition, R ∈ Rn×ny

and S ∈ Rnf×ny are free matrices to be decided.
Proof. By substituting (3) and (8) into (10), we can show

that

FĜf
s=

[
A+LC L

HC H

] [
A ABf M−1−Bf ΛM−1

C CBf M−1

]
s=

⎡⎣ A+LC LC

0 A

LCBf M−1

ABf M−1−Bf ΛM−1

HC HC HCBf M−1

⎤⎦
s=

⎡⎣ T−1

⎡⎣ A+LC LC

0 A

⎤⎦T T−1

⎡⎣ LCBf M−1

ABf M−1−Bf ΛM−1

⎤⎦[
HC HC

]
T HCBf M−1

⎤⎦
s=

⎡⎣ A+LC 0

0 A

LCBf M−1+ABf M−1−Bf ΛM−1

ABf M−1−Bf ΛM−1

HC 0 HCBf M−1

⎤⎦
s=

[
A+LC LCBf M−1+ABf M−1−Bf ΛM−1

HC HCBf M−1

]
= I,

where the similarity transformation matrix T =
[

I −I
0 I

]
.

Hence, (14) gives a sufficient condition to ensure that (10)
is satisfied.

According to Lemma 3.1, an co-outer Ĝf implies that
CBf has full column rank. Therefore, Moore–Penrose gen-
eralized inverse can be applied to solve (14), which results
in (15) and (16). �

V. AN LMI SOLUTION TO OPTIMAL
DISTURBANCE DECOUPLING

Linear matrix inequality techniques have proved to be
popular in control system analysis and design due to their
numerical reliability. The applications of LMI in model-
based FD have been addressed in [10], [19] and [25], where
LMI techniques are used to solve a sensitivity optimization
problem, however, isolation ability was not emphasized.

In this section, we use the freedom provide in Lemma
4.1 to minimize residual sensitivity to disturbances, which is
achieved using the Bounded Real Lemma [23].

Lemma 5.1: Let ny > nf . There exist L and H such that
A + LC is stable and ‖Trd‖∞ < γ if and only if there exist
L, H and P = PT ∈ Rn×n such that P > 0 and⎡⎣ (A+LC)T P+P (A+LC) P (Bd+LDd) CT HT

(Bd+LDd)T P −γI DT
d HT

HC HDd −γI

⎤⎦ < 0. (17)

The Bounded Real Lemma gives the solvability conditions
in the form of a Bilinear Matrix Inequality. The next theorem
provides a numerical algorithm to compute L and H via
solving an LMI. Note that the condition is only sufficient
since it is based on Lemma 4.1 which gives sufficient
conditions on L and H to satisfy the isolation condition (10).

Theorem 5.1: Suppose that ny > nf and Ĝf is co–
outer. There exist L and H such that the specifications
in Problem 2.2 are satisfied if there exist Z ∈ Rn×ny ,
S ∈ Rnf×ny and P = PT ∈ Rn×n such that

P > 0, (18)

and⎡⎣ P (A+L1C)+ZL2C+(�) (�) (�)

(Bd+L1Dd)T P+DT
d LT

2 ZT −γI (�)

H1C+SL2C H1Dd+SL2Dd −γI

⎤⎦ < 0, (19)

where (�) denotes terms readily inferred from symmetry.
Furthermore, if (18) and (19) are solved, we can construct
L and H as

L = L1 + P−1ZL2, (20)

H = H1 + SL2. (21)
Proof. By substituting (15) and (16) into (17) and applying

Lemma 5.1, we get (18) and (19). Then (9) is achieved if
the LMIs have a feasible solution. The corresponding filter
is obtained by extracting R = P−1Z and S from the LMIs.
�

Remark 5.1: Here, we design a stable fault isolating filter
for the general case and, furthermore, derive an LMI algo-
rithm for minimizing the effect of disturbances (using the
H∞–norm as a measure) on the residual. The results obtained
generalise those of [14] and [4].
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VI. NUMERICAL EXAMPLE

To illustrate the application of the isolation filter scheme
in a real system, a jet engine example is considered in this
section. The GE-21 jet engine state-space model [20] is given
as

A=

⎡⎣ −3.370 1.636
−0.325 −1.896

⎤⎦ ,

B=

⎡⎣ 0.586 −1.419 1.252
0.410 1.118 0.139

⎤⎦ ,

C=

⎡⎢⎢⎣
1 0
0 1

0.731 0.786

⎤⎥⎥⎦ ,

D=

⎡⎢⎢⎣
0 0 0
0 0 0

0.267 −0.025 −0.146

⎤⎥⎥⎦ .

The system has n = 2, ny = 3, and nu = 3. To consider
the general case (ny > nf ), we suppose that this system is
subject to two potential actuator faults. Here, the setup is
given by

Bf =
[

0.586 −1.419
0.410 1.118

]
,

and the disturbance distribution matrices are given as

Bd =
[ −0.2163 0.0627

−0.8328 0.1438

]
,

Dd =

⎡⎣ −0.5732 −0.0188
0.5955 0.1636
0.5946 0.0873

⎤⎦ .

It is easy to see that Ĝf is a co-outer function via checking
condition (3) in Lemma 3.1. A simple selection of the
diagonal matrix is

Λ = diag{−1,−2}, M = diag{1, 1},
which means that we allocate the same priority to each fault.

Following Lemma 4.1, we have

L1=

⎡⎣ 1.6853 −1.1942 0.2933

0.4251 0.0755 0.3701

⎤⎦ ,

L2=

⎡⎢⎢⎣
0.2483 0.2670 −0.3397

0.2670 0.2871 −0.3652

−0.3397 −0.3652 0.4647

⎤⎥⎥⎦ ,

H1=

⎡⎣ 0.3732 0.5766 0.7260

−0.3756 0.4262 0.0604

⎤⎦ .

Then, substituting into (19) results in the observer gains

L=

⎡⎣ −0.6025 −3.6542 3.4230

−0.6718 −1.1039 1.8705

⎤⎦ ,

H=

⎡⎣ 1.1128 1.3719 −0.2859

0.2938 1.1461 −0.8554

⎤⎦ .

The corresponding optimal γo = 0.2296.
Assume that disturbance 1 is a white noise with mean zero

and standard deviation 1 and disturbance 2 is a constant bias

of amplitude 1 applied from the 2nd second. Fault 1 in actua-
tor 1, simulated by an abrupt jump, and fault 2 in actuator 2,
simulated by an incipient drift with slope 0.5, are connected
from the 4th second and 6th second, respectively. Figure 1
gives the residual responses. The example makes clear that
the designed filter satisfies the performance requirement of
rapid fault detection and isolation which is sufficiently robust
against disturbances.
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Fig. 1. Time response of the residual vector

VII. SUMMARY

We have presented the solution of a fault detection and
isolation problem using a state observer framework. The fault
isolation is accomplished by solving two equality constraints
(see Lemma 4.1). It was also shown that the optimal FDI
filter design reduces to the solution of linear matrix inequal-
ities (see Theorem 5.1 ). Our scheme can handle multiple
faults (where faults might occur at the same time) as well as
provide robustness to disturbances. A jet engine example is
given to clarify our algorithm.
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