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Modal Analysis of Grid-Connected Doubly
Fed Induction Generators
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Abstract—This paper presents the modal analysis of a grid-
connected doubly fed induction generator (DFIG). The change
in modal properties for different system parameters, operating
points, and grid strengths are computed and observed. The results
offer a better understanding of the DFIG intrinsic dynamics, which
can also be useful for control design and model justification.

Index Terms—Doubly fed induction generator, eigenvalue anal-
ysis, nonlinear dynamic model, small-signal stability.

I. INTRODUCTION

TRADITIONALLY, the oscillatory behavior of power sys-
tems has been dominated by the electromechanical inter-

actions between the synchronous generators through the net-
work. As the generation of power from wind energy conversion
systems (WECS) using induction generators is increasing sig-
nificantly, it is important to assess the impact of this type of
asynchronous generation on the system stability and vice versa.

The dynamic behavior of the doubly fed induction generator
(DFIG) has been investigated by various authors. The major-
ity of these studies are based on time-domain simulations to
show the impact on power system dynamics [1], [2], the perfor-
mance of decoupled control and maximum power tracking [3],
the response to grid disturbances [4], the fault ridethrough be-
havior [5], the control methods to make the DFIG behave like
a synchronous generator [6], etc. Time-domain studies offer a
direct appreciation of the dynamic behavior in terms of visual
clarity. However, they are not able to identify and quantify the
cause and nature of interactions and problems. This comple-
mentary information can be obtained with eigenvalue studies.

Such studies have been carried out earlier for fixed-speed
induction generators in WECS applications [7] and variable-
speed induction machines in slip-energy recovery drive applica-
tions [8], [9]. In this paper, the grid-connected DFIG is studied.
The single-machine infinite-bus (SMIB) approach is followed.

The paper is organized as follows. In Section II, modeling
considerations are briefly reviewed. In Section III, the base-case
analysis is given, and the typical DFIG small-signal behavior
is explained. In Sections IV–VII, the eigenvalue loci for differ-
ent machine parameters, operating points, and grid strength are
examined, and the conditions for which stator transients can be
neglected are determined. Section VIII presents the conclusion.
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Fig. 1. Grid-connected WECS with DFIG.

II. MODELING

The studied SMIB system is shown in Fig. 1. The DFIG
transforms the input turbine power Pt into electrical power. The
produced stator power Ps is always positive. The rotor power
Pr can be both positive and negative due to the presence of the
back-to-back converter. This allows the machine to operate at
both sub- and supersynchronous speeds [3].

A. Turbine

The turbine is formed by the blades and the hub. Its role is
to capture the kinetic energy of the wind and transfer it to the
generator in the form of mechanical power.

The dynamics of the airflow around the blades can be modeled
using, e.g., blade element methods or computational fluid dy-
namic methods [10]. In general, these detailed models are used
for the purpose of turbine design and mechanical testing only.

For stability studies, an algebraic model is used, and the
dynamics related to turbine, yaw system, and tower can be
ignored [11], [12]. The algebraic model reflects the fact that
the captured power is only a portion of available wind power
(theoretical maximum = Betz limit).

In this paper, the input mechanical power is assumed constant.
In other words, it is assumed that the wind speed and blade pitch
angle do not change during the period of study. This simplifies
the analysis by allowing the observation of the modes inherent
to the generator.

B. Drive Train

In power system studies, drive trains are modeled as a series
of rigid disks connected via massless shafts. For small-signal
analysis of synchronous generators (SG) in conventional power
plants, the one-mass or lumped-mass model is used because
the drive train behaves as a single equivalent mass (the mode
of interest is nontorsional, with nearly equal participation of
all inertias) [13]. This results from the fact that the mechanical
stiffness (between the generator, turbine and between adjacent
turbine segments) is much higher than the equivalent electrical
stiffness (between the generator and the infinite bus) [7]. In
this case, the mode of interest is often referred interchangeably
as “system mode,” “nontorsional-mode,” or “electromechanical
mode” [13].
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When it comes to DFIG in wind power plants, the mechanical
parameters are such that those terms cannot be used interchange-
ably. The presence of a gearbox makes the shaft more slender,
resulting in a mechanical stiffness of the same order as the
equivalent electrical stiffness [7], [14]. The lower shaft stiffness
combined with the fact that the generator is relatively much
lighter than the turbine results in a dynamic behavior where
there is no “system mode.” In other words, there is no mode for
which the drive train behaves as a single equivalent mass.

As a result, a multimass drive train must be considered for
small-signal stability studies of WECS with DFIG. In general, it
is sufficient to consider the two-mass model (one for the turbine,
the other for the generator) because the modes associated with
the blades and hub are either well damped or out of the frequency
range of interest [7].

The dynamic equations are obtained from Newton’s equations
of motion for each mass (rotational speed) and shaft (torsion or
twist angle) [2]

2Ht
dωt

dt
=

Pt

ωt
− Tsh (1)

1
ωelB

dθtw

dt
= ωt − ωr (2)

2Hg
dωr

dt
= Tsh − Te (3)

where ωt and ωr [per unit (p.u.)] are the turbine and generator
speeds, respectively; θtw [rad] is the shaft twist angle; Ht and
Hg [s] are the turbine and generator inertias, respectively; ωelB

[rad/s] is the electrical base speed; Pt [p.u.] is the turbine input
power (here assumed as constant); and Tsh and Te [p.u.] are the
shaft and generator torques, respectively

Tsh = kθtw + c

(
dθtw

dt

)
(4)

Te =
(

e′qs

ωs

)
iqs +

(
e′0ds

ωs

)
ids (5)

where k [p.u./el.rad] and c [p.u.s/el.rad] are the shaft stiffness
and damping coefficients, respectively; e′qs, e

′
ds, iqs, and ids, and

ωs are defined in Section II-C.

C. Generator

The dynamic equations describing the DFIG are obtained by
transforming the machine three-phase voltage equations into
a synchronously rotating frame, referred to as the dq frame
[3]. In this paper, the abc–dq transformation is power invariant
with the d-axis leading. For stability studies, the generators
are usually modeled as an equivalent voltage source based on
transient impedance [13]. This is done by defining the variables

e′qs = Kmrrωsψdr (6)

e′ds = −Kmrrωsψqr (7)

L′
s = Lss −

L2
m

Lrr
(8)

Tr =
Lrr

Rr
(9)

Fig. 2. DFIG equivalent model for stability studies.

where e′qs and e′ds [p.u.] are the equivalent internal q- and d-axis
voltages, respectively; ψqr and ψdr [p.u.] are the rotor q- and
d fluxes, respectively; Kmrr = Lm/Lrr; and Lss, Lrr, and Lm

[p.u.] are the stator, rotor, and mutual inductances, respectively.
Rr [p.u.] is the rotor resistance.

For balanced and unsaturated conditions, the corresponding
p.u. DFIG model is

ωsL
′
s

ωel

diqs

dt
= −R1iqs + ωsL

′
sids +

ωr

ωs
e′qs −

1
Trωs

e′ds · · ·

· · · − vqs + Kmrrvqr (10)

ωsL
′
s

ωel

dids

dt
= −ωsL

′
siqs − R1ids +

1
Trωs

e′qs +
ωr

ωs
e′ds · · ·

· · · − vds + Kmrrvdr (11)

1
ωel

de′qs

dt
= R2ids −

1
Trωs

e′qs +
(

1 − ωr

ωs

)
e′ds − Kmrrvdr

(12)

1
ωel

de′ds

dt
= −R2iqs −

(
1 − ωr

ωs

)
e′qs −

1
Trωs

e′ds + Kmrrvqr

(13)

where iqs and ids [p.u.] are the stator q- and d-axis currents, re-
spectively; ωs [p.u.] is the synchronous speed; ωel = ωelBωs;Rs

[p.u.] is the stator resistance; and R1 = Rs + R2 and R2 =
K2

mrrRr.
The generator has three dynamic parts: stator electrical (10),

(11); rotor electrical (12), (13); and rotor mechanical (3). For
stability studies of conventional SG, stator transients are ne-
glected [13]. Here, they are included so that the validity of this
assumption can be checked.

The DFIG equivalent model for stability studies is shown in
Fig. 2. The variables with an upperline are complex values with
the real and imaginary components equal to the q- and d-axis
components, respectively (e.g., the stator current is Is = iqs +
jids). The current source IC2 represents the bidirectional current
from the grid-side converter, as explained in Section II-D.

D. Converter

The ac–dc–ac converter comprises of two pulse width modu-
lation inverters connected back-to-back via a dc link. The rotor-
side converter operates as a controlled voltage source since it
injects an ac voltage at slip frequency to the DFIG rotor. The
grid-side converter operates as a controlled current source since
it maintains the dc-link voltage constant and injects an ac current
at grid frequency to the network [3].
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The ac voltage of the rotor-side converter depends on the
control objectives. For grid-connected WECS applications, a
sensible choice is to impose a constraint for maximum power
capture (equivalent to airgap power, electromagnetic torque, or
speed constraint) and another for the voltage control (reactive
power constraint). These two objectives determine the DFIG
rotor voltage

V r = V
ref
r so that Te = T ref

e (ωr), Vs = V ref
s . (14)

The control objectives are usually formulated in the con-
verter dq-axis with decoupled real and reactive power control.
A convenient way to implement the active power control for the
rotor-side converter is to construct a reference torque as a func-
tion of the generator speed [3]. By doing so, the generator speed
control is incorporated, and the requirement of wind-speed mea-
surement is avoided.

For the grid-side converter, the control has to be coordinated
so that the dc-link voltage is constant and the desired sharing of
reactive power with stator is achieved. The reactive power shar-
ing between the stator- and grid-side converters can be chosen
arbitrarily. For minimum converter rating, as assumed in this pa-
per, no sharing is done, and the reactive power delivered to the
grid comes only from the stator. Hence, the grid-side converter
ac current is such that the active power injected to the mains
matches that of the rotor-side converter at unity power factor

IC2 = I
ref
C2 so that PC2 = Pr, QC2 = 0. (15)

By assuming the current control sufficiently fast and accu-
rate, the dc-link voltage can be considered as constant, and
no dynamic model is required for the dc-link capacitor. The
role of the dc-link capacitor is to act as a voltage source to
the converters. For drive applications using a diode rectifier on
the rotor side, the dynamics of the dc-link components may not
be ignored because of the dc-energy storage mechanism, bulkier
dc components, and lesser control capability. For back-to-back
converters, however, an adequate control eliminates the need
for storage in the dc-link and ensures a practically constant dc
voltage [15].

In this paper, it is assumed that the ac–dc–ac converter is
made of lossless components, and the switching dynamics are
not considered (not in the range of interest). The analysis is
done for open loop, i.e., the rotor voltage remains constant at its
initial value. Closed-loop controllers are not included because
the eigenvalues displacement they introduce depends very much
on the control scheme and gains, so that the conclusions regard-
ing the small-signal behavior will not be a true reflection of the
DFIG dynamics.

E. External Grid

To complete the model of the grid-connected DFIG, two more
equations are required, namely the equations of the active and
reactive power exchange between the grid and the generator.

In this paper, the external system is the infinite bus. Hence,
the network algebraic equations are simply

Ptogrid =
VsVb sin γe

Xe
(16)

Qtogrid =
V 2

s − VsVb cos γe

Xe
(17)

where the active and reactive powers delivered by the generator
are Ptogrid = Ps + PC2 and Qtogrid = Qs + QC2 with PC2 =
Pr and QC2 = 0;Vs is the DFIG stator voltage magnitude; Vb

and γe are the magnitude and angle of the infinite bus voltage;
and Xe is the reactance of the external line.

III. MODAL ANALYSIS—BASE CASE

A. Initial Conditions

Initialization of the power system model is the starting point
for both time-domain and frequency-domain analyses. This is
done in two steps. First, the loadflow calculation is done in order
to obtain the voltage magnitude, voltage angle, and injected
active and reactive powers at each bus. Then, with the obtained
loadflow solution, the generator is initialized by solving its set of
differential algebraic equations (DAE) with all time derivatives
set equal to zero.

B. Linearized Dynamic Model

The mathematical model of a power system can be written as
a set of DAE

dx

dt
= f(x, z, u) (18)

0 = g(x, z, u) (19)

where x, z, and u are the state, algebraic, and input variables;
f and g are the vectors of differential and algebraic equations,
respectively. In small-signal analysis studies, (18) and (19) are
linearized by a Taylor series expansion around an operating
point (x0, z0, u0). Neglecting the terms of order two and above,
and eliminating the algebraic variable z, the system state matrix
is obtained as

Asys =

[
∂f

∂x
− ∂f

∂z

(
∂g

∂z

)−1
∂g

∂x

]
x0,z0,u0

. (20)

The system dynamics is studied by examining the eigen-
values of Asys, as shown in Section IV. In this paper,
x = [iqs ids e′qs e′ds ωr θtw ωt]′, z = [Vs γe]′, u =
[vqr vdr Pt]′, f is contained in (10)–(13) and (1)–(3), and g
is contained in (16) and (17).

C. Base-Case Modes

The SMIB system shown in Fig. 1 is studied. In the base case,
the terminal voltage is 1 p.u., the total active power is 1 p.u.,
and the speed is at its rated value, which is assumed to be the
synchronous speed. It is also assumed that the DFIG is directly
connected to the infinite bus, i.e., the reactive power output is
zero, and the terminal voltage remains constant. The effect of
finite grid strength is investigated later.

The base-case eigenvalues and their labeling are shown in
Table I(A). The modal oscillation frequency, damping ratio, and
participation factors are shown in Table I(B). The labeling of
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TABLE I
BASE-CASE MODES

the modes is determined by observing the participation factors,
as explained later.

The base case has four stable modes, three of which are os-
cillating. The participation factors show the physical nature of
the modes: λ1 is a mechanical mode associated with the tur-
bine and shaft dynamics (turbine speed and torsion angle); λ2 is
an electromechanical mode associated with the rotor electrical
and mechanical dynamics (q-axis flux and generator speed); λ3

is an electrical mode associated with the stator dynamics; and
λ4 is a nonoscillating mode associated with the rotor electri-
cal dynamics (d-axis flux). The participation factors also show
that the modes are decoupled since a particular state variable
participates significantly in only one of the modes.

The mechanical mode is the dominant mode. It has a very low
frequency (∼0.5 Hz) with a reasonable damping ratio (∼10%).
The electromechanical mode has a higher frequency (∼10 Hz)
and a slightly better damping ratio. The stator mode has the
lowest damping ratio. However, its time constant is small (large
real-part magnitude) and its frequency is much higher and out
of the range of interest.

The three oscillating modes can be visualized, as shown in
Fig. 3. The figure shows the time-domain response of the DFIG
active power to a step change in terminal voltage from 1 to
0.5 p.u. at t = 0 s. The thin and thick lines are the DFIG response
with and without stator dynamics, respectively. Conditions for
which stator dynamics can be neglected are discussed later.

IV. MODAL ANALYSIS—EFFECT OF PARAMETERS

The changes in the eigenvalues for different parameters char-
acterizing the drive train and generator are investigated in this
section. For the drive train, the effect of stiffness and inertia val-
ues are considered. For the generator, the effects of the mutual
inductance and resistance values are considered.

A. Drive Train Parameters

Varying the values of stiffness and inertia while keeping all
other parameters at their base-case values does not cause sig-
nificant eigenvalue displacement of the electrical modes (stator

Fig. 3. Visualization of the DFIG modes in time domain: active power re-
sponse to change in terminal voltage.

TABLE II
(NT) AND T MODES FOR DIFFERENT DRIVE-TRAIN PARAMETERS

and nonoscillating modes). Hence, the following discussion de-
scribes only the effect on the mechanical and electromechanical
modes.

For a two-mass drive train, the mechanical state variables
contribute to two modes. One is of a lower frequency, which is
the nontorsional mode (causes in-phase oscillations of inertias).
The other is of a higher frequency, which is the torsional mode
(causes antiphase oscillations of inertias). The mechanical pa-
rameters determine which of these two modes is dominant and
whether they are mechanical or electromechanical.

For WECS with DFIG and flexible drive trains, the stiffness
has a low value, and inertias are different of about one order
(k < 1 p.u./el.rad, Ht ≈ 10Hg ≈ 0.4 s) [7], [16]. In such a case,
the nontorsional mode is the dominant mode, which is a me-
chanical mode. This is shown in Table II(A) where the lower
frequency mode (0.54 Hz) is closest to the imaginary axis and
has significant participation only from the shaft and turbine
states.

For conventional SG, the stiffness is relatively higher, and
inertias are of the same order (k ≥ 50 p.u./el.rad, Ht ≈ Hg ≈
1 s) [7], [13]. In such a case, the torsional mode is the dominant
mode, which is a mechanical mode. This is shown in Table II(B)
where the higher frequency mode (20.47 Hz) is closest to the
imaginary axis and has significant participation only from the
mechanical states. In general, this mode is out of the frequency
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Fig. 4. Eigenvalue loci of the electromechanical and mechanical modes for
increasing mutual inductance (Lm = 1–5 p.u.).

range of interest and is not considered in stability studies of
low-frequency oscillations.

In Table II(B), the nontorsional mode (NT) has nearly equal
participation of both the generator and the turbine. The combi-
nation of these two factors (no torsion and equal participation)
means that for stiff drive train and similar generator and turbine
inertia (typical for SG), the drive train behaves as a single mass
for the electromechanical mode.

The same observation cannot be made for flexible shafts (typi-
cal for WECS with DFIG), as shown in Table II(A). This clearly
shows that in such a case the terms “system mode,” “elec-
tromechanical mode,” and “nontorsional mode” cannot be used
interchangeably, as it is done for conventional SG.

B. Generator Parameters

The parameters whose effects are investigated are those that
present the most variability across references (see Appendix).
These are the mutual inductance Lm and the stator resistance
Rs.

1) Mutual Inductance: Varying the value of Lm while keep-
ing all other parameters constant does not cause significant
eigenvalue displacement for the electrical modes (stator and
nonoscillating modes). For the electromechanical and mechan-
ical modes, the corresponding eigenvalue displacements are
shown in Fig. 4.

For both modes, the magnitude of the imaginary part de-
creases and that of the real part increases as Lm increases. The
mutual inductance can be seen as a representation of the airgap
length, with a large inductance accounting for a small airgap.
Hence, the observations indicate that small-airgap machines are
better damped and their oscillation frequencies are lower com-
pared to large-airgap machines.

2) Stator Resistance: Varying the stator resistance Rs while
keeping all other parameters constant causes noticeable dis-
placements for all eigenvalues. Fig. 5 show the eigenvalue loci
for Rs/Xm = 1/800 to 1/100. As the stator resistance increases,
all the oscillating modes are better damped since they move fur-
ther away from the imaginary axis.

The nonoscillating mode becomes more and more negative
up to a point (Rs/Xm ≈ 1/120). Then, it suddenly moves back
toward the origin.

The oscillation frequency decreases most noticeably for the
stator mode. However, it remains out of the frequency range
of interest. For the mechanical mode, the frequency drop is

Fig. 5. Eigenvalue loci of the stator, nonoscillating, electromechanical, and
mechanical modes for increasing stator resistance (Rs/Xm = 1/800 to 1/100).

TABLE III
MODES FOR VERY RESISTIVE MACHINE (Rs/Xm = 1/50)

less pronounced (see scaling of the imaginary axis). For the
electromechanical mode, the frequency decreases up to a point
(Rs/Xm ≈ 1/120). Then, it increases again.

Participation factors are also affected resulting in completely
different dynamics for very resistive machines (Rs/Xm ≥
1/100). In such cases, the real mode is the dominant mode
(closest to the imaginary axis) as shown in Table III(A), i.e., the
system is overdamped. In addition, the electrical and mechani-
cal dynamics become decoupled as shown in Table III(B) where
λ1 and λ4 are the mechanical modes (significant participation
from mechanical states only), and λ2 and λ3 are the electrical
modes (significant participation from electrical states only).

V. MODAL ANALYSIS—EFFECT OF THE OPERATING POINT

In this section, the effects of power production at nonsyn-
chronous speeds, nonunity power factors, and nonunity terminal
voltages are investigated.
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TABLE IV
INVESTIGATED INITIAL ROTOR SPEED AND CORRESPONDING

ACTIVE POWER LEVEL

TABLE V
MODES FOR SUBSYNCHRONOUS SPEED OPERATION

(ωr = 0.7 P.U., Ptogrid = 0.35 P.U.)

A. Initial Rotor Speed and Active Power Loading

Since the DFIG may operate at large slips, it is important to
study how its dynamic behavior changes with the rotor speed.
Table IV shows the initial rotor speeds that are investigated. The
sub- and supersynchronous speeds in Table IV(A) and IV(B)
mean that the DFIG is in maximum power tracking (MPT)
regime or constant power tracking (CPT) regime, respectively.

The effect of initial rotor speed on the stator mode is not sig-
nificant. For the nonoscillating mode, the eigenvalue is the fur-
thest away from the imaginary axis at synchronous speeds, while
its absolute value decreases dramatically at nonsynchronous
speeds. In fact, at large slip, the real eigenvalue is the dominant
mode as shown in Table V(A) for the operating point ωr = 0.7
p.u., Ptogrid = 0.35 p.u. In such a case, the system is overdamped,
and the oscillations are not an issue.

Fig. 6 shows the eigenvalue displacement of the electrome-
chanical and mechanical modes for the operating points of
Table IV. From a stability viewpoint, small-slip speed (operating
points around B) is the region of least stability. This also means
that assuming the rated speed as synchronous is a more conser-
vative approach. For the mechanical mode, the operating points
A and C are the most stable for sub- and supersynchronous
speed operations, respectively. This means that in both the MPT
and CPT regimes, there is an optimal speed for the stability of
the critical mode.

Fig. 6. Eigenvalue loci of the electromechanical and mechanical modes for
increasing rotor speed (ωr = 0.67–1.3 p.u.). The indicated operating points are:
A for ωr = 0.8 p.u.; B for ωr = 1 p.u.; C for ωr = 1.15 p.u. The symbols “o”
and “+” are used for sub- and supersynchronous speeds, respectively.

Fig. 7. Damping ratio and oscillation frequency of the electromechanical and
mechanical modes for increasing rotor speed (ωr = 0.67–1.3 p.u.).

Fig. 7 shows the damping ratio and frequency of the elec-
tromechanical and mechanical modes as functions of the initial
speeds given in Table IV. The damping ratio as well as the
frequency have values around the synchronous speed. Interest-
ingly, if the slip range is limited to ±10%, the change in ζ and
fosc is also limited to ±10%.

Participation factors are also modified. At nonsynchronous
speeds, the contribution of electrical dynamics is more impor-
tant for the complex eigenvalues (oscillating modes). For the
real eigenvalue (nonoscillating mode), it is the contribution of
mechanical dynamics that becomes most important. These ob-
servations can be seen in Table V.

B. Initial Reactive Power Loading

The reactive power level does not influence the small-signal
properties significantly. This is shown in Table VI where the
changes in eigenvalues for Qtogrid = −1 p.u. (reactive power
absorption at power factor 0.7), Qtogrid = 0 p.u. (unity power
factor operation, base case), and Qtogrid = 1 p.u. (reactive power
production at power factor 0.7) are not important. Participation
factors are not shown as they are not significantly modified. The
main effect of the DFIG reactive power level consists in higher
current levels for nonunity power factor, as shown in Table VII.

C. Initial Terminal Voltage

The effect of voltage level is different in CPT and MPT
conditions. Fig. 8 shows the eigenvalue displacement for in-
creasing terminal voltages in the CPT regime (Ptogrid = 1 p.u.
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TABLE VI
MODES FOR DIFFERENT REACTIVE POWER LEVELS

WITH Ptogrid = 1 P.U., Vs = 1 P.U.

TABLE VII
MAGNITUDE OF STATOR AND ROTOR CURRENT FOR DIFFERENT REACTIVE

POWER LEVELS WITH Ptogrid = 1 P.U., Vs = 1 P.U.

Fig. 8. Eigenvalue loci for increasing terminal voltage (Vs = 0.5 − 1.5 p.u.)
with Ptogrid = 1 p.u., Qtogrid = 0 p.u. The symbols “o” and “+” are used for
voltages below and above unity, respectively.

and ωr = ωs). The stator and the nonoscillating modes are not
significantly affected. For both electromechanical and mechan-
ical modes, the oscillation frequency increases with the voltage
as the magnitude of the imaginary part increases. In the CPT
regime, the system is less stable for the overvoltage condition
as the dominant mode (mechanical mode) moves closer to the
imaginary axis.

Fig. 9. Eigenvalue loci for increasing terminal voltage (Vs = 0.5 − 1.5 p.u.)
with Ptogrid = 0.5 pu, Qtogrid = 0 p.u. The symbols “o” and “+” are used for
voltages below and above unity, respectively.

Fig. 10. Eigenvalue loci of the stator and nonoscillating modes for different
values of external reactance (Xe = 0 − 0.15 p.u.).

TABLE VIII
INVESTIGATED VALUES OF EXTERNAL LINE REACTANCE Xe [P.U.]

Fig. 9 shows the eigenvalue displacement for increasing ter-
minal voltages in the MPT regime (Ptogrid < 1 p.u. and ωr < ωs).
The stator mode is not significantly affected. The electrome-
chanical and mechanical modes move toward the imaginary
axis in an overvoltage condition indicating a less stable condi-
tion. For the depressed voltage condition (Vs ≤ 0.5 p.u.), the
system is overdamped.

VI. MODAL ANALYSIS—EFFECT OF GRID STRENGTH

In earlier discussion, the stator voltage was assumed con-
stant, i.e., the external grid is infinitely strong. If, however, the
DFIG is connected to the infinite bus through a finite reactance,
the terminal voltage is not constant and becomes an algebraic
variable, which has to be eliminated as in (20).

For the external line reactance values of Table VIII, the effect
of Xe is only significant for the stator and the nonoscillating
modes. Fig. 10 shows the corresponding eigenvalue displace-
ment. Both modes move toward the right-half plane as Xe
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increases (i.e., as the external grid is weaker). For too large
a line reactance, the stator mode becomes unstable, requiring a
closed-loop control or series compensation to reduce the effec-
tive value of Xe.

Grid strength does not affect the participation factors signif-
icantly. As a result, although frequency and damping change,
the stator mode remains decoupled from the other modes.

VII. NEGLECTING STATOR TRANSIENT

For conventional SG, the stator dynamics is neglected for
compatibility and simplification purposes. This assumption is
acceptable as it gives conservative results (speed deviation is
overestimated) [13]. A recent paper showed similar conclusions
for the DFIG with time-domain simulations [17].

In this paper, the validity of neglecting stator dynamics is ex-
amined with modal analysis. Stator state variables can be con-
sidered as algebraic variables (i.e., they change instantaneously)
when the stator mode has a small time constant (eigenvalue
with large real-part magnitude), high frequency that is out of
the range of interest (eigenvalue with large imaginary-part mag-
nitude), and when the stator states participate significantly only
in the stator mode (if stator states participate in other modes,
neglecting stator dynamics may modify these modes).

In all the cases discussed earlier, the above three conditions
were fulfilled. In fact, it is only in extreme cases that the par-
ticipation of stator states in other modes becomes significant.
In this paper, the stator states participate significantly in other
modes (piqs + pids ≥ 10%) when Ht ≤ 1.3 s, Lm ≤ 1 p.u., and
Rs/Xm ≥ 1/125. In other words, for machines with sufficiently
high inertia, high magnetizing inductance, and small stator resis-
tance, neglecting stator transient does not modify the dynamics
of interest.

VIII. CONCLUSION

This paper presented the modal analysis of an SMIB system
with DFIG. A seventh-order model has been used with four state
variables for the DFIG (stator and rotor dynamics) and three for
the drive train (two-mass model). The results give the machine
local modes, i.e., oscillations of the DFIG against the external
system.

The small-signal behavior is characterized by four modes,
three of which are oscillating. The slowest mode (which is the
dominant mode) is the drive-train nontorsional mode. Oscillat-
ing at∼0.5 Hz, it is a mechanical mode associated with shaft and
turbine dynamics. The second slowest mode is the drive-train
torsional mode. Oscillating at∼10 Hz, it is an electromechanical
mode associated with rotor dynamics (generator speed and rotor
q-axis flux). The third oscillating mode is an electrical mode.
Oscillating at ∼50 Hz, it is associated with the stator dynamics.
The nonoscillating mode has a small time constant of ∼0.05 s
and is associated with the rotor d-axis flux dynamics.

The effects of several parameters (drive-train inertias, stiff-
ness, generator mutual inductance, and stator resistance), oper-
ating points (rotor speed, reactive power loading, and terminal-
voltage level), and grid strength (external line reactance value)
on the system modes have been studied. The conditions for

TABLE IX
TWO-MASS DRIVE-TRAIN PARAMETERS FROM [16] AND [7]

TABLE X
DFIG PARAMETERS FROM [9], [18], [19], [20], AND [21]

TABLE XI
BASE-CASE DFIG PARAMETERS

which stator dynamics can be neglected have also been pro-
vided.

The results of this study offer a good starting point for the
small-signal analysis of multimachine power systems with both
conventional SG and wind-driven DFIG.

APPENDIX

A. DFIG Parameters

Table IX gives some values for the generator inertia Hg ,
turbine inertia Ht and equivalent shaft stiffness keq of the two-
mass drive train model. Both references consider MW machines.
The smaller values of Ht given in [16] can be explained by the
use of lighter material for blade fabrication nowadays.

Table X gives some values for induction machine parameters.
For consistent comparison, values are expressed in terms of
the ratio. The columns Xm and Rs/Xm present the largest
variability. Roughly said, larger machines have larger Xm and
smaller Rs/Xm.

Table XI gives the parameters used for the base case.

B. Definitions for Modal Analysis

For the eigenvalues λ = σ ± jω of the matrix Asys defined in
(20), the oscillation frequency fosc [Hz], damping ratio ζ, and
participation factors pki can be calculated as

fosc = ω/(2π) (21)

ζ = −σ/
√

σ2 + ω2 (22)

pki = |Ψik||Φki|/
n∑

k=1

|Ψik||Φki| (23)
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where Ψik and Φki are the kth elements of the left and right
eigenvectors of the ith mode. In (23), normalization is done so
that pki is the participation percentage of the kth state variable
in the ith eigenvalue.
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