
Automatica 42 (2006) 2209–2214
www.elsevier.com/locate/automatica

Technical communique

On the facet-to-facet property of solutions to convex parametric quadratic
programs�

JZrgen SpjZtvolda,∗, Eric C. Kerriganb, Colin N. Jonesc, Petter TZndela, Tor A. Johansena

aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
bDepartment of Aeronautics and Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK

cAutomatic Control Laboratory, ETH-Swiss Federal Institute of Technology, Physikstrasse 3, ETL I 29, CH-8092, Zürich, Switzerland

Received 12 May 2005; received in revised form 4 May 2006; accepted 27 June 2006
Available online 7 September 2006

Abstract

In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the
closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an
example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot
guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the
purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs,
the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Several algorithms for solving a convex parametric quadratic
program (pQP) (Baotić, 2002; Bemporad, Morari, Dua, & Pis-
tikopoulos, 2002; Seron, Goodwin, & De Doná, 2003; TZndel,
Johansen, & Bemporad, 2003a,b) and a parametric linear pro-
gram (pLP) (Borrelli, Bemporad, & Morari, 2003) have recently
been developed. The growing interest in parametric program-
ming is due to the observation that explicit solutions to model
predictive control (MPC) problems can be obtained by solv-
ing parametric programs (Bemporad, Borrelli, & Morari, 2002;
Bemporad, Morari et al., 2002; Seron et al., 2003).

The algorithms proposed in Bemporad, Morari et al. (2002)
and Borrelli et al. (2003) introduce artificial cuts in the pa-
rameter space in the search for the solution, while in Seron
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et al. (2003) an algorithm based on considering all combinations
of constraints is presented. In Baotić (2002) and Grieder, Bor-
relli, Torrisi, and Morari (2004) the authors propose a method
for exploring the parameter space, which is conceptually and
computationally more efficient than in Bemporad, Morari et al.
(2002), Borrelli et al. (2003) and Seron et al. (2003); by step-
ping a sufficiently small distance over the boundary of a so-
called critical region1 and solving an LP or QP for the result-
ing parameter, a new critical region is defined. This procedure
looks promising, but implicitly relies on the assumption that
the facets of the closures of adjacent critical regions satisfy a
certain property, namely that their intersection is a facet of both
regions. We will refer to this as the facet-to-facet property. In
TZndel et al. (2003a, 2003b) the authors propose a method in
which each facet of the critical region is examined and, depend-
ing on whether the facet ensures feasibility or optimality, the
active set in the neighboring critical region is found by adding

1 A critical region is defined as the set of parameters for which some
fixed set of constraints are fulfilled with equality at all solutions of an
optimization problem.
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or removing a constraint from the current active set. The ex-
amination of each facet relies on a number of non-degeneracy
assumptions and in cases where they are not satisfied, the algo-
rithm assumes that the facet-to-facet property holds when step-
ping a small distance over a facet to determine the active set in
the adjacent region. The algorithms presented in Baotić (2002),
Bemporad, Morari et al. (2002), Grieder et al. (2004), Seron
et al. (2003) and TZndel et al. (2003a) are applied to strictly
convex pQPs and utilized to obtain explicit solutions to model
predictive control problems. We show by an example that for
the class of convex pQPs a critical region may have more than
one adjacent critical region for each facet. Consequently, the
facet-to-facet property does not generally hold. A simple mod-
ification of the algorithm in TZndel et al. (2003a), based on
results from Bemporad, Morari et al. (2002), that does not rely
on the facet-to-facet property, is presented. Finally, numerical
results indicate that the proposed method has a lower compu-
tational complexity than the algorithm in Bemporad, Morari et
al. (2002) for pQPs whose solution contains a large number of
critical regions.

2. Preliminaries

If A is a matrix or column vector, then Ai denotes the ith
row of A and AI denotes the sub-matrix of the rows of A
corresponding to the index set I. Recall that the set of affine
combinations of points in a set S ⊂ Rn is called the affine hull
of S, and is denoted aff(S). The dimension of a set S ⊂ Rn is the
dimension of aff(S), and is denoted dim(S); if dim(S)=n, then
S is said to be full-dimensional. The closure and interior of a set
S is denoted cl(S) and int(S), respectively. The relative interior
of a set S is the interior relative to aff(S), i.e. relint(S) :=
{x ∈ S |B(x, r) ∩ aff(S) ⊆ S for some r > 0}, where the ball
B(x, r) := {y | ‖y−x‖�r} and ‖·‖ is any norm. A polyhedron
is the intersection of a finite number of closed halfspaces. A
non-empty set F is a face of the polyhedron P ⊂ Rn if there
exists a hyperplane {z ∈ Rn | aTz= b}, where a ∈ Rn, b ∈ R,
such that F =P ∩{z ∈ Rn | aTz=b} and aTz�b for all z ∈ P .
Given an s-dimensional polyhedron P ⊂ Rn, where s�n, the
facets of P are the (s − 1)-dimensional faces of P.

Consider the following strictly convex PQP:

V ∗(�) := min
x∈Rn
{ 12 xTHx|Ax�b + S�}, (1)

where � ∈ Rs is the parameter of the optimization problem,
and the vector x ∈ Rn is to be optimized for all values of � ∈ �,
where � ⊆ Rs is some polyhedral set. Moreover, H = HT ∈
Rn×n, H > 0, A ∈ Rq×n, b ∈ Rq×1, and S ∈ Rq×s . For a given
parameter �, the minimizer to (1) is denoted by x∗(�). Without
loss of generality, the following standing assumption is made
(Bemporad, Morari et al., 2002; Borrelli et al., 2003):

Assumption 1. The set of admissible parameters � is full-
dimensional, and for all � ∈ �, the set of feasible points
X(�) := {x ∈ Rn | Ax�b + S�} is non-empty.

Definition 1 (Optimal active set). Let x be a feasible point of
(1) for a given �. The active constraints are the constraints that
fulfill Aix−bi−Si�=0. The indices of the constraints that are
active at the solution x∗(�) is referred to as the optimal active
set and it is denoted by A∗(�), i.e.

A∗(�) := {i ∈ {1, 2, . . . , q} |Aix
∗(�)− bi − Si�= 0}.

Definition 2 (Critical region). Given an index set A ⊆
{1, 2, . . . , q}, the critical region �A associated with A is the
set of parameters for which the optimal active set is equal to
A, i.e.

�A := {� ∈ � |A∗(�)=A}.

Definition 3 (LICQ). For a non-empty index set A ⊆
{1, 2, . . . , q}, we say that the linear independence constraint
qualification (LICQ) holds for A if the gradients of the set of
constraints indexed by A are linearly independent, i.e. AA

has full row rank.

Theorem 1 (Bemporad, Morari et al., 2002). Consider the
pQP in (1). The value function V ∗ : � → R is convex and
continuous. The minimizer function x∗ : �→ Rn is continuous
and piecewise affine in the sense that there exists a finite set
of full-dimensional polyhedra R := {R1, . . . , RK} such that
� = ⋃K

k=1Rk , int(Ri) ∩ int(Rj ) = ∅ for all i 	= j and the
restriction x∗|Rk

: Rk → Rn is affine for all k ∈ {1, . . . , K}.

A method for computing the expression for the restriction
(affine function) x∗|Rk

and its polyhedral domain Rk is sum-
marized below. The KKT conditions for (1) are:

Hx + AT�= 0, � ∈ Rq ,

�i (Aix − bi − Si�)= 0 ∀i ∈ {1, . . . , q},
Ax − b − S��0,

�i �0 ∀i ∈ {1, . . . , q},
where � are the Lagrange multipliers. Assume that an index
set A is given such that it is an optimal active set for some
parameter � ∈ � and let N := {1, 2, . . . , q}\A. If LICQ
holds for A, then the KKT conditions can be manipulated
(Bemporad, Morari et al., 2002) to obtain the following two
affine functions:

xA(�) := −H−1AT
A�∗A(�),

�∗A(�) := −(AAH−1AT
A)−1(bA + SA�).

If Rk is the closure of the critical region associated with A:

Rk := cl(�A)=
{
� ∈ �

∣∣∣∣ANxA(�)�bN + SN�
�∗A(�)�0

}
(2)

then the restriction of the minimizer function x∗ to the poly-
hedron Rk is given by x∗|Rk

(�) = xA(�). If LICQ does not
hold, then closure of a critical region associated with an opti-
mal active set can be found by projecting a polyhedron in the
(x, �)-space onto the parameter space (Bemporad, Morari et
al., 2002; TZndel et al., 2003b).
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In the sequel, the closure of a critical region will be written
in the more compact form

cl(�A) =: {� ∈ � |Ci��di, i = 1, . . . , J },
which is obtained from (2) or by projection. An inequality
Ci��di in the description of cl(�A) is said to be facet-defining
if {� |Ci� = di} equals the affine hull of one of the facets of
cl(�A). If there exists more than one facet-defining inequality
for a given facet, these inequalities are referred to as coinciding
inequalities. A representation of cl(�A) where every redundant
inequality has been removed is referred to as an irredundant
representation (note that an irredundant representation does not
have any coinciding inequalities).

3. Algorithms for exploring the parameter space

The goal of most algorithms for solving pQPs is to iden-
tify only the closures of the full-dimensional critical regions
(Baotić, 2002; Bemporad, Morari et al., 2002; Borrelli et al.,
2003; Grieder et al., 2004; TZndel et al., 2003a, 2003b). For this
purpose we introduce the notion of adjacent critical regions.

Definition 4 (Adjacent critical regions). Two full-dimensional
critical regions �A ⊂ Rs and �B ⊂ Rs are said to be adjacent
if dim(cl(�A) ∩ cl(�B))= s − 1.

The framework for studying the various algorithms is given
in Algorithm 1, where the auxiliary set U is defined as the set
of closures of identified regions whose adjacent regions have
not been found.
The output of Algorithm 1 is a collection R of closures of full-
dimensional critical regions for (1). From this point on, we will
let K denote the number of sets in R. Where it is clear from
the context, Rk will refer to the kth set in R and RA will refer
to the set in R associated with the optimal active set A.

We will consider the algorithms in TZndel et al. (2003a),
Baotić (2002), Grieder et al. (2004) and TZndel et al. (2003b).
It should be noted that, on a conceptual level, these algorithms

Algorithm 1. Exploring the parameter space.

Input: Data to problem (1).
Output: Set of closures of full-dimensional critical

regions R.
1: Find a � ∈ � such that dim(cl(�A∗(�)))= s.
2: R← {cl(�A∗(�))} and U← {cl(�A∗(�))}.
3: while U 	= ∅ do
4: Choose any element U ∈ U.
5: U← U\{U}.
6: for all facets f of U do
7: Find the set S of full-dimensional critical

regions adjacent to U along the facet f.
8: U← U ∪ (S\R).
9: R← R ∪S.
10: end for
11: end while

differ only in step 7 in Algorithm 1 and that the different strate-
gies may not always yield a satisfactory result. This will be
addressed in the rest of this section.

3.1. Identifying adjacent regions from a QP

The procedure used in Baotić (2002) and Grieder et al. (2004)
as step 7 of Algorithm 1 is given in Procedure 1. This method
is also used in the multi parametric toolbox (MPT) (Kvasnica,
Grieder, & Baotić, 2005).

Note that at most one adjacent critical region is identified for
each facet of the region under consideration. The implementa-
tion of the procedure will not be discussed.

3.2. Identifying adjacent regions from inequalities

Let A be a given optimal active set for some � ∈ �. The
objective is to identify a critical region adjacent to �A along
a given facet f of its closure. Consider the following conditions
(TZndel et al., 2003a):

(1) LICQ holds for A.
(2) There are no coinciding inequalities for facet f in (2), where

redundant constraints have not yet been removed.
(3) There are no weakly active constraints at x∗(�) for all � ∈

cl (�A), that is, � i ∈A⇒ �∗i (�)= 0, ∀� ∈ cl(�A).

Procedure 1. Finding an adjacent full-dimensional critical
region along a given facet.

Input: Irredundant representation of the closure of a full-di-
mensional critical region U =: {� |Ci��di, i = 1, . . . , J }
and the index
j whose corresponding inequality defines facet f.

Output: Closure of a full-dimensional critical region S
adjacent to U along the facet f.

1: S← ∅.
2: Choose any �̂ ∈ relint(f ).
3: if the facet f is not on the boundary of � then
4: Choose any scalar � > 0 such that � := �̂+ �CT

j ∈ �
and � is in a full-dimensional critical region adjacent
to U.

5: Compute A∗(�) by solving the QP (1).
6: S← {cl(�A∗(�))}.
7: end if

If these conditions hold, then TZndel et al. (2003a) prove that
there is only one critical region adjacent to �A along facet f
and that the corresponding optimal active set can be found by
determining what type of inequality defines f. If the inequality
that defines f is of the type �i �0, then i is removed from A,
hence S = {cl(�A\{i})}. On the other hand, if the inequality
is of the type Aix

∗(�)�bi + Si�, then i is added to A, hence
S={cl(�A∪{i})}. If the conditions do not hold, then Procedure
1 is used. Clearly, as in Section 3.1, only one adjacent critical
region is identified for each facet with this strategy.
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Fig. 1. Illustration that Algorithm 1 may fail to identify all the critical regions
if the facet-to-facet property does not hold, the strategies in Section 3.1 or
3.2 are employed at step 7 of Algorithm 1 and no additional assumptions on
the problem are given. The shaded region is unexplored.

3.3. Required solution properties

Consider now the question: what conditions must the solution
to (1) satisfy in order to ensure that the strategies in Section
3.1 or 3.2 guarantee that

⋃K
k=1Rk = �? For this purpose, we

introduce the following definition:

Definition 5 (Facet-to-facet). Let P := {Pi | i ∈ I} be a
finite collection of full-dimensional polyhedra in Rs , where
int(Pi)∩ int(Pj )=∅ for all (i, j), i 	= j . We say that the facet-
to-facet property holds for P if F(i,j) := Pi ∩ Pj is a facet of
both Pi and Pj for all (s − 1)-dimensional intersections F(i,j).

It is clear that the facet-to-facet property is important when
referring to the set of full-dimensional critical regions of (1). If
the set of closures of the full-dimensional critical regions do not
satisfy the facet-to-facet property, then it may be insufficient to
only identify one adjacent region for each facet, as illustrated
in Fig. 1. The following example illustrates that the facet-to-
facet property does not generally hold for strictly convex pQPs.
Hence, the algorithms in Baotić (2002), Grieder et al. (2004),
TZndel et al. (2003a, 2003b) cannot guarantee that the entire
parameter space will be explored.

Example 1. Consider the problem:

V ∗(�) := min
x∈R3
{ 12xTx|x ∈ P(�)}, � ∈ �,

P(�) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x3 � − 1+ �1

−x1 − x3 � − 1− �1

x2 − x3 � − 1− �2

−x2 − x3 � − 1+ �2

3
4x1 + 16

25x2 − x3 � − 1+ �1

− 3
4x1 − 16

25x2 − x3 � − 1− �1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� := {� ∈ R2| − 3
2 ��i � 3

2 , i = 1, 2}.
The unique set of full-dimensional critical regions is depicted in
Fig. 2, where we have indexed the critical regions with the op-
timal active sets. The critical regions R{1,4,5}, R{1,3,6}, R{2,4,5},
and R{2,3,6} have more than one adjacent critical region along
one of their facets, hence the facet-to-facet property is violated
for the set of closures of full-dimensional critical regions.
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Fig. 2. Facet-to-facet property violated.

In SpjZtvold (2005) it is verified analytically that LICQ
holds for all optimal active sets, that the KKT conditions hold
for (x∗(�), �∗(�)) for a parameter in the interior of each full-
dimensional critical region, and numerically verified that every
other combination of active constraints yield empty or lower-
dimensional critical regions. Thus, the violation of the facet-to-
facet property is not a consequence of numerical inaccuracies.
However, there is a lower-dimensional critical region of particu-
lar interest, namely the critical region defined by A={1, ..., 6},
which is analytically computed in SpjZtvold (2005) as

cl(�{1,...,6})= {�|�1 =− 64
25�2,− 1600

4721 ��2 � 1600
4721 }.

The representations of R{1,4,5}, R{1,3,6}, R{2,4,5}, R{2,3,6},
R{1,3,5}, and R{2,4,6} obtained from (2) all have three coincid-
ing inequalities along the line �1 =− 64

25�2. This suggests that,
due to the statements in Section 3.2, coinciding inequalities in
the description of the critical regions may be the reason for
the violation of the facet-to-facet property. Empirical exami-
nation also shows that the presented example is not an isolated
incident of the facet-to-facet property being violated. By let-
ting the constant values on the right-hand side be written as
−[1, 1, 1, 1 + �, 1 + �, 1 + �]T, the facet-to-facet property is
violated for any � ∈ [− 1

10 , 2
5 ].

4. A new exploration strategy

The algorithm in Bemporad, Morari et al. (2002) does not
rely on the facet-to-facet property but, as mentioned in the in-
troduction, introduces a number of artificial cuts in the param-
eter space as it searches for the solution. As a consequence the
performance degrades as the number of critical regions become
large. In TZndel et al. (2003a) the authors propose a more effi-
cient way of exploring the parameter space, but it relies on the
facet-to-facet property. We aim at modifying the algorithm in
TZndel et al. (2003a) in order to ensure its correctness.

The proposed method finds all critical regions adjacent to
a critical region along a given facet and in order to preserve
the computational advantages of the algorithm in TZndel et al.
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(2003a) compared to the one in Bemporad, Morari et al. (2002),
the modification is to be utilized only when the conditions in
Section 3.2 do not hold. We use the algorithm in Bemporad,
Morari et al. (2002) to explore the parameter space in a small
polyhedral subset M ⊂ � and discard the artificial cuts once
the solution has been found. For a given optimal active set A,
if the goal is to identify the critical regions adjacent to �A

along a given facet f of its closure, then the polyhedron M must
be full-dimensional and satisfy the property:

cl(�A) ∩M = f .

For use in the proposed method, the set of optimal active sets
associated with the polyhedron M is defined as

C(M) := {A ⊆ {1, 2, . . . , q} | dim(M ∩ cl(�A))= s}.

A method for obtaining all adjacent regions is given in Proce-
dure 2.
Note that the number of critical regions that intersect M is
expected to be small, hence the algorithm in Bemporad, Morari
et al. (2002) is well suited. Moreover, the artificial cuts made
inside M are discarded once the exploration terminates, thus
the artificial cuts do not cause the performance to degrade to
the same extent as in Bemporad, Morari et al. (2002). The
choice of � in step 6 is arbitrary from a theoretical point of
view, but it is important to note that too small a value will
cause numerical problems and too large a value may result

Procedure 2. Identifying all adjacent full-dimensional critical
regions along a given facet.

Input: Irredundant representation of the closure of a full-
dimensional critical region U=:{� |Ci��di, i=1, . . . ,

J} and the index j whose corresponding inequality
defines facet f.

Output: Set S of closures of full-dimensional critical re-
gions adjacent to U along the facet f, and set T which
is a subset of the full-dimensional critical regions not
adjacent to U.

1: S← ∅ and T← ∅.
2: if the facet f is not on the boundary of � then
3: if the conditions in Section 3.2 hold then
4: Find the critical region �A that is adjacent

to U along f as described in Section 3.2 and
let S← {cl(�A)}.

5: else
6: Choose any scalar � > 0 and construct the

polyhedron

Mj :=
{

� ∈ �

∣∣∣∣∣
Ci��di, ∀i ∈ {1, ..., J }\{j}
Cj��dj

Cj��dj + �

}

7: Compute the set C(Mj ) by solving the
pQP (1) inside Mj using the algorithm in
Bemporad, Morari et al. (2002).

8: for each A ∈ C(Mj ) do
9: if dim (cl (�A) ∩ U)= s − 1 then
10: S←S ∪ {cl (�A)}. {Adjacent critical re-

gion}
11: else
12: T←T ∪ {cl (�A)}.
13: end if
14: end for
15: end if
16: end if

in an unnecessary increase in the computational effort. This
issue will be further discussed in Section 5. Note that C(Mj )

may define additional critical regions that are not adjacent to
the critical region considered and/or critical regions that have
already been discovered. However, this is not a problem since
one can either choose to keep them as identified regions or
discard them. In Procedure 2 we have chosen to return all those
critical regions which are not adjacent to U and those that have
already been discovered; step 8 of Algorithm 1 can be replaced
by U← U∪(S\R)∪(T\R) and step 9 by R← R∪S∪T.

The computational advantages of the algorithm in TZndel et
al. (2003a) compared to the one in Bemporad, Morari et al.
(2002) is well documented, so the performance of the proposed
procedure relies on how often the conditions in Section 3.2 do
not hold. Numerical results will be given in the next section.
Before we prove the correctness of the algorithm, we need a
technical lemma, which is proven in SpjZtvold (2005).

Lemma 1. Given two s-dimensional closed sets, P and S, in
Rs , such that int(P ) ∩ int(S) = ∅. A necessary condition for
the set P ∪ S to be convex is that

dim(P ∩ S)= s − 1.

Theorem 2 (Correctness of the Algorithm). Algorithm 1 com-
bined with Procedure 2 for step 7 ensures that

⋃K
k=1Rk =�.

Proof. Assume that R is the output of the algorithm and that⋃
R∈RR ⊂ �. Let

P := {cl(�A) | dim(�A)= s for (1)}\R,

and let MR
j denote the set in Procedure 2 associated with the

j th facet of R ∈ R. By the correctness of the algorithm in
Bemporad, Morari et al. (2002) and the fact that dim(cl(�A)∩
MR

j ) = s if R and �A are adjacent along the j th facet of R,
all full-dimensional critical regions adjacent to R have been
identified. Hence, for any pair (R, P ) ∈ R×P we must have
dim(R∩P) < s−1, otherwise P would be a member of R, and
consequently, dim((

⋃
R∈RR)∩ (

⋃
P∈PP)) < s−1. Moreover,

we have � = (
⋃

R∈RR) ∪ (
⋃

P∈PP). Hence, by Lemma 1, a
contradiction is reached, since � is convex. �
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Fig. 3. Comparison of the number of optimization problems solved by the
algorithms.

5. Numerical example

In this section we make a quantitative comparison of the fol-
lowing exploration strategies: (i) the algorithm in Bemporad,
Morari et al. (2002), and (ii) the proposed algorithm of com-
bining Algorithm 1 with Procedure 2 for step 7. The algorithms
are tested on an MPC problem for a linear time invariant system

z(k + 1)= �z(k)+ �u(k), z(0)= z0, (3)

where z(k) ∈ R4 and u(k) ∈ R2 are the state and input at
time k, respectively, and � and � are matrices with suitable
dimensions. The objective is to minimize the following cost
function

J (z0) :=
N∑

k=1

(z(k)TQz(k)+ u(k − 1)TRu(k − 1)),

where Q = QT �0 and R = RT > 0, subject to the system
equation (3), state constraints z ∈ Z := {z | z�z�z}, and
input constraints u ∈ U := {u |u�u�u}. This problem is
recast as a pQP as described in Bemporad, Morari et al.
(2002) and the algorithms are tested on 80 random instances
of (�, �, Q, R,Z,U) with a prediction horizon N ∈ {3, 4, 5}.
For simplicity, all systems are stable, controllable and observ-
able. The solutions have an average of 317 critical regions and
Fig. 3 compares the total number of optimization problems
solved by the algorithms. As expected, the computational effort
used to find an explicit solution is on average lowest for alter-
native (ii). This shows that alternative (ii) is preferable also in
practice. Note that although the performance of the proposed
method relies on the choice of �, it is not difficult to choose a
value such that the proposed method is more efficient than the
algorithm in Bemporad, Morari et al. (2002). Also, from Fig. 3
it is apparent that the difference in the computational effort is
expected to grow as the number of critical regions K increases.

6. Conclusion

It has been shown by an example that, for strictly convex
PQMS, a critical region may have more than one adjacent criti-
cal region for each facet, hence the facet-to-facet property does
not hold, in general. This renders some of the recently devel-
oped algorithms for this problem class without guarantees that
the entire parameter space will be explored. A simple method
based on the algorithms in Bemporad, Morari et al. (2002) and
TZndel et al. (2003a) was proposed such that the completeness
of the exploration strategy is guaranteed. Numerical results also
indicate that the proposed method is computationally more ef-
ficient than the algorithm in Bemporad, Morari et al. (2002) in
practice.
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