

Available online at www.sciencedirect.com

automatica

Automatica 42 (2006) 2209-2214

www.elsevier.com/locate/automatica

Technical communique

On the facet-to-facet property of solutions to convex parametric quadratic programs $\stackrel{\curvearrowleft}{\succ}$

Jørgen Spjøtvold^{a,*}, Eric C. Kerrigan^b, Colin N. Jones^c, Petter Tøndel^a, Tor A. Johansen^a

^aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

^bDepartment of Aeronautics and Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK ^cAutomatic Control Laboratory, ETH-Swiss Federal Institute of Technology, Physikstrasse 3, ETL I 29, CH-8092, Zürich, Switzerland

> Received 12 May 2005; received in revised form 4 May 2006; accepted 27 June 2006 Available online 7 September 2006

Abstract

In some of the recently developed algorithms for convex parametric quadratic programs it is implicitly assumed that the intersection of the closures of two adjacent critical regions is a facet of both closures; this will be referred to as the facet-to-facet property. It is shown by an example, whose solution is unique, that the facet-to-facet property does not hold in general. Consequently, some existing algorithms cannot guarantee that the entire parameter space will be explored. A simple modification, applicable to several existing algorithms, is presented for the purpose of overcoming this problem. Numerical results indicate that, compared to the original algorithms for parametric quadratic programs, the proposed method has lower computational complexity for problems whose solutions consist of a large number of critical regions. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Parametric programming; Quadratic programming; Explicit model predictive control

1. Introduction

Several algorithms for solving a convex parametric quadratic program (pQP) (Baotić, 2002; Bemporad, Morari, Dua, & Pistikopoulos, 2002; Seron, Goodwin, & De Doná, 2003; Tøndel, Johansen, & Bemporad, 2003a,b) and a parametric linear program (pLP) (Borrelli, Bemporad, & Morari, 2003) have recently been developed. The growing interest in parametric programming is due to the observation that explicit solutions to model predictive control (MPC) problems can be obtained by solving parametric programs (Bemporad, Borrelli, & Morari, 2002; Bemporad, Morari et al., 2002; Seron et al., 2003).

The algorithms proposed in Bemporad, Morari et al. (2002) and Borrelli et al. (2003) introduce artificial cuts in the parameter space in the search for the solution, while in Seron

* Corresponding author.

et al. (2003) an algorithm based on considering all combinations of constraints is presented. In Baotić (2002) and Grieder, Borrelli, Torrisi, and Morari (2004) the authors propose a method for exploring the parameter space, which is conceptually and computationally more efficient than in Bemporad, Morari et al. (2002), Borrelli et al. (2003) and Seron et al. (2003); by stepping a sufficiently small distance over the boundary of a socalled critical region¹ and solving an LP or QP for the resulting parameter, a new critical region is defined. This procedure looks promising, but implicitly relies on the assumption that the facets of the closures of adjacent critical regions satisfy a certain property, namely that their intersection is a facet of both regions. We will refer to this as the facet-to-facet property. In Tøndel et al. (2003a, 2003b) the authors propose a method in which each facet of the critical region is examined and, depending on whether the facet ensures feasibility or optimality, the active set in the neighboring critical region is found by adding

 $[\]stackrel{\scriptscriptstyle {\rm this}}{\to}$ This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Jay H. Lee under the direction of Editor André Tits.

E-mail address: jorgesp@itk.ntnu.no (J. Spjøtvold).

^{0005-1098/\$ -} see front matter C 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.automatica.2006.06.026

¹ A critical region is defined as the set of parameters for which some fixed set of constraints are fulfilled with equality at all solutions of an optimization problem.

or removing a constraint from the current active set. The examination of each facet relies on a number of non-degeneracy assumptions and in cases where they are not satisfied, the algorithm assumes that the facet-to-facet property holds when stepping a small distance over a facet to determine the active set in the adjacent region. The algorithms presented in Baotić (2002), Bemporad, Morari et al. (2002), Grieder et al. (2004), Seron et al. (2003) and Tøndel et al. (2003a) are applied to strictly convex pQPs and utilized to obtain explicit solutions to model predictive control problems. We show by an example that for the class of convex pQPs a critical region may have more than one adjacent critical region for each facet. Consequently, the facet-to-facet property does not generally hold. A simple modification of the algorithm in Tøndel et al. (2003a), based on results from Bemporad, Morari et al. (2002), that does not rely on the facet-to-facet property, is presented. Finally, numerical results indicate that the proposed method has a lower computational complexity than the algorithm in Bemporad, Morari et al. (2002) for pQPs whose solution contains a large number of critical regions.

2. Preliminaries

If A is a matrix or column vector, then A_i denotes the *i*th row of A and $A_{\mathscr{I}}$ denotes the sub-matrix of the rows of A corresponding to the index set \mathcal{I} . Recall that the set of affine combinations of points in a set $S \subset \mathbb{R}^n$ is called the *affine hull* of *S*, and is denoted aff(*S*). The *dimension of a set* $S \subset \mathbb{R}^n$ is the dimension of aff(S), and is denoted dim(S); if dim(S) = n, then S is said to be full-dimensional. The closure and interior of a set S is denoted cl(S) and int(S), respectively. The *relative interior* of a set S is the interior relative to aff(S), i.e. relint(S) := $\{x \in S \mid B(x, r) \cap aff(S) \subseteq S \text{ for some } r > 0\}$, where the ball $B(x, r) := \{y \mid ||y - x|| \leq r\}$ and $||\cdot||$ is any norm. A polyhedron is the intersection of a finite number of closed halfspaces. A non-empty set F is a *face* of the polyhedron $P \subset \mathbb{R}^n$ if there exists a hyperplane $\{z \in \mathbb{R}^n \mid a^T z = b\}$, where $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, such that $F = P \cap \{z \in \mathbb{R}^n \mid a^T z = b\}$ and $a^T z \leq b$ for all $z \in P$. Given an *s*-dimensional polyhedron $P \subset \mathbb{R}^n$, where $s \leq n$, the facets of P are the (s - 1)-dimensional faces of P.

Consider the following strictly convex PQP:

$$V^*(\theta) := \min_{x \in \mathbb{R}^n} \{ \frac{1}{2} x^{\mathrm{T}} H x | Ax \leq b + S\theta \},$$
(1)

where $\theta \in \mathbb{R}^s$ is the *parameter* of the optimization problem, and the vector $x \in \mathbb{R}^n$ is to be optimized for all values of $\theta \in \Theta$, where $\Theta \subseteq \mathbb{R}^s$ is some polyhedral set. Moreover, $H = H^T \in \mathbb{R}^{n \times n}$, H > 0, $A \in \mathbb{R}^{q \times n}$, $b \in \mathbb{R}^{q \times 1}$, and $S \in \mathbb{R}^{q \times s}$. For a given parameter θ , the minimizer to (1) is denoted by $x^*(\theta)$. Without loss of generality, the following standing assumption is made (Bemporad, Morari et al., 2002; Borrelli et al., 2003):

Assumption 1. The set of admissible parameters Θ is fulldimensional, and for all $\theta \in \Theta$, the set of feasible points $X(\theta) := \{x \in \mathbb{R}^n \mid Ax \leq b + S\theta\}$ is non-empty. **Definition 1** (*Optimal active set*). Let *x* be a feasible point of (1) for a given θ . The active constraints are the constraints that fulfill $A_i x - b_i - S_i \theta = 0$. The indices of the constraints that are active at the solution $x^*(\theta)$ is referred to as the *optimal active set* and it is denoted by $\mathscr{A}^*(\theta)$, i.e.

$$\mathscr{A}^{*}(\theta) := \{ i \in \{1, 2, \dots, q\} \mid A_{i}x^{*}(\theta) - b_{i} - S_{i}\theta = 0 \}.$$

Definition 2 (*Critical region*). Given an index set $\mathscr{A} \subseteq \{1, 2, ..., q\}$, the critical region $\Theta_{\mathscr{A}}$ associated with \mathscr{A} is the set of parameters for which the optimal active set is equal to \mathscr{A} , i.e.

$$\Theta_{\mathscr{A}} := \{ \theta \in \Theta \mid \mathscr{A}^*(\theta) = \mathscr{A} \}.$$

Definition 3 (*LICQ*). For a non-empty index set $\mathscr{A} \subseteq \{1, 2, ..., q\}$, we say that the linear independence constraint qualification (LICQ) holds for \mathscr{A} if the gradients of the set of constraints indexed by \mathscr{A} are linearly independent, i.e. $A_{\mathscr{A}}$ has full row rank.

Theorem 1 (Bemporad, Morari et al., 2002). Consider the pQP in (1). The value function $V^* : \Theta \to \mathbb{R}$ is convex and continuous. The minimizer function $x^* : \Theta \to \mathbb{R}^n$ is continuous and piecewise affine in the sense that there exists a finite set of full-dimensional polyhedra $\mathscr{R} := \{R_1, \ldots, R_K\}$ such that $\Theta = \bigcup_{k=1}^K R_k$, $\operatorname{int}(R_i) \cap \operatorname{int}(R_j) = \emptyset$ for all $i \neq j$ and the restriction $x^*|_{R_k} : R_k \to \mathbb{R}^n$ is affine for all $k \in \{1, \ldots, K\}$.

A method for computing the expression for the restriction (affine function) $x^*|_{R_k}$ and its polyhedral domain R_k is summarized below. The KKT conditions for (1) are:

$$Hx + A^{T}\lambda = 0, \quad \lambda \in \mathbb{R}^{q},$$

$$\lambda_{i}(A_{i}x - b_{i} - S_{i}\theta) = 0 \quad \forall i \in \{1, \dots, q\},$$

$$Ax - b - S\theta \leq 0,$$

$$\lambda_{i} \geq 0 \quad \forall i \in \{1, \dots, q\},$$

where λ are the Lagrange multipliers. Assume that an index set \mathscr{A} is given such that it is an optimal active set for some parameter $\theta \in \Theta$ and let $\mathscr{N} := \{1, 2, ..., q\} \setminus \mathscr{A}$. If LICQ holds for \mathscr{A} , then the KKT conditions can be manipulated (Bemporad, Morari et al., 2002) to obtain the following two affine functions:

$$\begin{aligned} x^{\mathscr{A}}(\theta) &:= -H^{-1}A_{\mathscr{A}}^{\mathsf{T}}\lambda_{\mathscr{A}}^{*}(\theta), \\ \lambda_{\mathscr{A}}^{*}(\theta) &:= -(A_{\mathscr{A}}H^{-1}A_{\mathscr{A}}^{\mathsf{T}})^{-1}(b_{\mathscr{A}} + S_{\mathscr{A}}\theta). \end{aligned}$$

If R_k is the closure of the critical region associated with \mathscr{A} :

$$R_{k} := \operatorname{cl}(\Theta_{\mathscr{A}}) = \left\{ \theta \in \Theta \left| \begin{array}{c} A_{\mathscr{N}} x^{\mathscr{A}}(\theta) \leqslant b_{\mathscr{N}} + S_{\mathscr{N}} \theta \\ \lambda_{\mathscr{A}}^{*}(\theta) \geqslant 0 \end{array} \right. \right\}$$
(2)

then the restriction of the minimizer function x^* to the polyhedron R_k is given by $x^*|_{R_k}(\theta) = x^{\mathscr{A}}(\theta)$. If LICQ does not hold, then closure of a critical region associated with an optimal active set can be found by projecting a polyhedron in the (x, λ) -space onto the parameter space (Bemporad, Morari et al., 2002; Tøndel et al., 2003b).

In the sequel, the closure of a critical region will be written in the more compact form

$$cl(\Theta_{\mathscr{A}}) =: \{\theta \in \Theta \mid C_i \theta \leq d_i, i = 1, ..., J\},\$$

which is obtained from (2) or by projection. An inequality $C_i \theta \leq d_i$ in the description of $cl(\Theta_{\mathscr{A}})$ is said to be *facet-defining* if $\{\theta \mid C_i \theta = d_i\}$ equals the affine hull of one of the facets of $cl(\Theta_{\mathscr{A}})$. If there exists more than one facet-defining inequality for a given facet, these inequalities are referred to as *coinciding inequalities*. A representation of $cl(\Theta_{\mathscr{A}})$ where every redundant inequality has been removed is referred to as an *irredundant* representation (note that an irredundant representation does not have any coinciding inequalities).

3. Algorithms for exploring the parameter space

The goal of most algorithms for solving pQPs is to identify only the closures of the full-dimensional critical regions (Baotić, 2002; Bemporad, Morari et al., 2002; Borrelli et al., 2003; Grieder et al., 2004; Tøndel et al., 2003a, 2003b). For this purpose we introduce the notion of *adjacent critical regions*.

Definition 4 (*Adjacent critical regions*). Two full-dimensional critical regions $\Theta_{\mathscr{A}} \subset \mathbb{R}^{s}$ and $\Theta_{\mathscr{B}} \subset \mathbb{R}^{s}$ are said to be adjacent if dim $(cl(\Theta_{\mathscr{A}}) \cap cl(\Theta_{\mathscr{B}})) = s - 1$.

The framework for studying the various algorithms is given in Algorithm 1, where the auxiliary set \mathscr{U} is defined as the set of closures of identified regions whose adjacent regions have not been found.

The output of Algorithm 1 is a collection \mathscr{R} of closures of fulldimensional critical regions for (1). From this point on, we will let *K* denote the number of sets in \mathscr{R} . Where it is clear from the context, R_k will refer to the *k*th set in \mathscr{R} and $R_{\mathscr{A}}$ will refer to the set in \mathscr{R} associated with the optimal active set \mathscr{A} .

We will consider the algorithms in Tøndel et al. (2003a), Baotić (2002), Grieder et al. (2004) and Tøndel et al. (2003b). It should be noted that, on a conceptual level, these algorithms

Algorithm 1. Exploring the parameter space.

Input: Data to problem (1).

Output: Set of closures of full-dimensional critical regions \mathscr{R} .

- 1: Find a $\theta \in \Theta$ such that dim $(cl(\Theta_{\mathscr{A}^*(\theta)})) = s$.
- 2: $\mathscr{R} \leftarrow {\operatorname{cl}(\mathscr{O}_{\mathscr{A}^*(\theta)})} \text{ and } \mathscr{U} \leftarrow {\operatorname{cl}(\mathscr{O}_{\mathscr{A}^*(\theta)})}.$
- 3: while $\mathscr{U} \neq \emptyset$ do
- 4: Choose any element $U \in \mathcal{U}$.
- 5: $\mathscr{U} \leftarrow \mathscr{U} \setminus \{U\}.$
- 6: **for** all facets f of U **do**
- 7: Find the set \mathscr{S} of full-dimensional critical regions adjacent to U along the facet f.

```
8: \mathscr{U} \leftarrow \mathscr{U} \cup (\mathscr{G} \setminus \mathscr{R}).
```

- 9: $\mathscr{R} \leftarrow \mathscr{R} \cup \mathscr{S}$.
- 10: **end for**
- 11: end while

differ only in step 7 in Algorithm 1 and that the different strategies may not always yield a satisfactory result. This will be addressed in the rest of this section.

3.1. Identifying adjacent regions from a QP

The procedure used in Baotić (2002) and Grieder et al. (2004) as step 7 of Algorithm 1 is given in Procedure 1. This method is also used in the multi parametric toolbox (MPT) (Kvasnica, Grieder, & Baotić, 2005).

Note that at most one adjacent critical region is identified for each facet of the region under consideration. The implementation of the procedure will not be discussed.

3.2. Identifying adjacent regions from inequalities

Let \mathscr{A} be a given optimal active set for some $\theta \in \Theta$. The objective is to identify a critical region adjacent to $\Theta_{\mathscr{A}}$ along a given facet *f* of its closure. Consider the following conditions (Tøndel et al., 2003a):

- (1) LICQ holds for \mathscr{A} .
- (2) There are no coinciding inequalities for facet f in (2), where redundant constraints have not yet been removed.
- (3) There are no weakly active constraints at $x^*(\theta)$ for all $\theta \in$ cl $(\Theta_{\mathscr{A}})$, that is, $\nexists i \in \mathscr{A} \Rightarrow \lambda_i^*(\theta) = 0, \forall \theta \in$ cl $(\Theta_{\mathscr{A}})$.

Procedure 1. Finding an adjacent full-dimensional critical region along a given facet.

Input: Irredundant representation of the closure of a full-dimensional critical region $U =: \{\theta \mid C_i \theta \leq d_i, i = 1, ..., J\}$ and the index

j whose corresponding inequality defines facet f.

Output: Closure of a full-dimensional critical region \mathscr{S} adjacent to *U* along the facet *f*.

$$1:\mathscr{S} \leftarrow \emptyset.$$

- 2: Choose any $\hat{\theta} \in \operatorname{relint}(f)$.
- 3: if the facet f is not on the boundary of Θ then
- 4: Choose any scalar $\varepsilon > 0$ such that $\theta := \hat{\theta} + \varepsilon C_j^T \in \Theta$ and θ is in a full-dimensional critical region adjacent to U.
- 5: Compute $\mathscr{A}^*(\theta)$ by solving the QP (1).
- 6: $\mathscr{G} \leftarrow {\operatorname{cl}(\Theta_{\mathscr{A}^*(\theta)})}.$
- 7: **end if**

If these conditions hold, then Tøndel et al. (2003a) prove that there is only one critical region adjacent to $\Theta_{\mathscr{A}}$ along facet fand that the corresponding optimal active set can be found by determining what type of inequality defines f. If the inequality that defines f is of the type $\lambda_i \ge 0$, then i is removed from \mathscr{A} , hence $\mathscr{S} = \{cl(\Theta_{\mathscr{A} \setminus \{i\}})\}$. On the other hand, if the inequality is of the type $A_i x^*(\theta) \le b_i + S_i \theta$, then i is added to \mathscr{A} , hence $\mathscr{S} = \{cl(\Theta_{\mathscr{A} \cup \{i\}})\}$. If the conditions do not hold, then Procedure 1 is used. Clearly, as in Section 3.1, only one adjacent critical region is identified for each facet with this strategy.

Fig. 1. Illustration that Algorithm 1 may fail to identify all the critical regions if the facet-to-facet property does not hold, the strategies in Section 3.1 or 3.2 are employed at step 7 of Algorithm 1 and no additional assumptions on the problem are given. The shaded region is unexplored.

3.3. Required solution properties

Consider now the question: what conditions must the solution to (1) satisfy in order to ensure that the strategies in Section 3.1 or 3.2 guarantee that $\bigcup_{k=1}^{K} R_k = \Theta$? For this purpose, we introduce the following definition:

Definition 5 (*Facet-to-facet*). Let $\mathscr{P} := \{P_i \mid i \in \mathscr{I}\}$ be a finite collection of full-dimensional polyhedra in \mathbb{R}^s , where $\operatorname{int}(P_i) \cap \operatorname{int}(P_j) = \emptyset$ for all $(i, j), i \neq j$. We say that the *facet-to-facet* property holds for \mathscr{P} if $F_{(i,j)} := P_i \cap P_j$ is a facet of both P_i and P_j for all (s - 1)-dimensional intersections $F_{(i,j)}$.

It is clear that the facet-to-facet property is important when referring to the set of full-dimensional critical regions of (1). If the set of closures of the full-dimensional critical regions do not satisfy the facet-to-facet property, then it may be insufficient to only identify one adjacent region for each facet, as illustrated in Fig. 1. The following example illustrates that the facet-tofacet property does not generally hold for strictly convex pQPs. Hence, the algorithms in Baotić (2002), Grieder et al. (2004), Tøndel et al. (2003a, 2003b) cannot guarantee that the entire parameter space will be explored.

Example 1. Consider the problem:

$$V^{*}(\theta) := \min_{x \in \mathbb{R}^{3}} \{ \frac{1}{2} x^{\mathrm{T}} x | x \in \mathscr{P}(\theta) \}, \quad \theta \in \Theta,$$

$$\mathscr{P}(\theta) := \begin{cases} x \in \mathbb{R}^{3} \\ x \in \mathbb{R}^{3} \\ x \in \mathbb{R}^{3} \end{cases} \begin{vmatrix} x_{1} - x_{3} \leqslant -1 + \theta_{1} \\ -x_{1} - x_{3} \leqslant -1 - \theta_{1} \\ x_{2} - x_{3} \leqslant -1 - \theta_{2} \\ -x_{2} - x_{3} \leqslant -1 - \theta_{2} \\ -x_{2} - x_{3} \leqslant -1 + \theta_{2} \\ \frac{3}{4} x_{1} + \frac{16}{25} x_{2} - x_{3} \leqslant -1 + \theta_{1} \\ -\frac{3}{4} x_{1} - \frac{16}{25} x_{2} - x_{3} \leqslant -1 - \theta_{1} \end{cases}$$

$$\Theta := \{\theta \in \mathbb{R}^{2} | -\frac{3}{2} \leqslant \theta_{i} \leqslant \frac{3}{2}, i = 1, 2\}.$$

The unique set of full-dimensional critical regions is depicted in Fig. 2, where we have indexed the critical regions with the optimal active sets. The critical regions $R_{\{1,4,5\}}$, $R_{\{1,3,6\}}$, $R_{\{2,4,5\}}$, and $R_{\{2,3,6\}}$ have more than one adjacent critical region along one of their facets, hence the facet-to-facet property is violated for the set of closures of full-dimensional critical regions.

Fig. 2. Facet-to-facet property violated.

In Spjøtvold (2005) it is verified *analytically* that LICQ holds for all optimal active sets, that the KKT conditions hold for $(x^*(\theta), \lambda^*(\theta))$ for a parameter in the interior of each full-dimensional critical region, and numerically verified that every other combination of active constraints yield empty or lower-dimensional critical regions. Thus, the violation of the facet-to-facet property is not a consequence of numerical inaccuracies. However, there is a lower-dimensional critical region defined by $\mathscr{A} = \{1, ..., 6\}$, which is analytically computed in Spjøtvold (2005) as

$$cl(\Theta_{\{1,\dots,6\}}) = \{\theta | \theta_1 = -\frac{64}{25}\theta_2, -\frac{1600}{4721} \le \theta_2 \le \frac{1600}{4721} \}.$$

The representations of $R_{\{1,4,5\}}$, $R_{\{1,3,6\}}$, $R_{\{2,4,5\}}$, $R_{\{2,3,6\}}$, $R_{\{1,3,5\}}$, and $R_{\{2,4,6\}}$ obtained from (2) all have three coinciding inequalities along the line $\theta_1 = -\frac{64}{25}\theta_2$. This suggests that, due to the statements in Section 3.2, coinciding inequalities in the description of the critical regions may be the reason for the violation of the facet-to-facet property. Empirical examination also shows that the presented example is not an isolated incident of the facet-to-facet property being violated. By letting the constant values on the right-hand side be written as $-[1, 1, 1, 1 + \alpha, 1 + \alpha, 1 + \alpha]^{T}$, the facet-to-facet property is violated for any $\alpha \in [-\frac{1}{10}, \frac{2}{5}]$.

4. A new exploration strategy

The algorithm in Bemporad, Morari et al. (2002) does not rely on the facet-to-facet property but, as mentioned in the introduction, introduces a number of artificial cuts in the parameter space as it searches for the solution. As a consequence the performance degrades as the number of critical regions become large. In Tøndel et al. (2003a) the authors propose a more efficient way of exploring the parameter space, but it relies on the facet-to-facet property. We aim at modifying the algorithm in Tøndel et al. (2003a) in order to ensure its correctness.

The proposed method finds all critical regions adjacent to a critical region along a given facet and in order to preserve the computational advantages of the algorithm in Tøndel et al. (2003a) compared to the one in Bemporad, Morari et al. (2002), the modification is to be utilized *only* when the conditions in Section 3.2 do not hold. We use the algorithm in Bemporad, Morari et al. (2002) to explore the parameter space in a small polyhedral subset $M \subset \Theta$ and discard the artificial cuts once the solution has been found. For a given optimal active set \mathscr{A} , if the goal is to identify the critical regions adjacent to $\Theta_{\mathscr{A}}$ along a given facet *f* of its closure, then the polyhedron *M* must be full-dimensional and satisfy the property:

 $\operatorname{cl}(\Theta_{\mathscr{A}}) \cap M = f.$

For use in the proposed method, the set of optimal active sets associated with the polyhedron M is defined as

$$\mathscr{C}(M) := \{\mathscr{A} \subseteq \{1, 2, \dots, q\} \mid \dim(M \cap \operatorname{cl}(\Theta_{\mathscr{A}})) = s\}.$$

A method for obtaining all adjacent regions is given in Procedure 2.

Note that the number of critical regions that intersect M is expected to be small, hence the algorithm in Bemporad, Morari et al. (2002) is well suited. Moreover, the artificial cuts made inside M are discarded once the exploration terminates, thus the artificial cuts do not cause the performance to degrade to the same extent as in Bemporad, Morari et al. (2002). The choice of ε in step 6 is arbitrary from a theoretical point of view, but it is important to note that too small a value will cause numerical problems and too large a value may result

Procedure 2. Identifying all adjacent full-dimensional critical regions along a given facet.

- **Input:** Irredundant representation of the closure of a fulldimensional critical region $U =: \{\theta \mid C_i \theta \leq d_i, i=1, ..., J\}$ and the index *j* whose corresponding inequality defines facet *f*.
- **Output:** Set \mathscr{S} of closures of full-dimensional critical regions adjacent to U along the facet f, and set \mathscr{T} which is a subset of the full-dimensional critical regions not adjacent to U.
- 1: $\mathscr{S} \leftarrow \emptyset$ and $\mathscr{T} \leftarrow \emptyset$.
- 2: if the facet f is not on the boundary of Θ then
- 3: if the conditions in Section 3.2 hold then
- 4: Find the critical region $\Theta_{\mathscr{A}}$ that is adjacent to U along f as described in Section 3.2 and let $\mathscr{S} \leftarrow {cl(\Theta_{\mathscr{A}})}$.
- 5: else
- 6: Choose any scalar $\varepsilon > 0$ and construct the polyhedron

$$M_j := \left\{ \theta \in \Theta \left| \begin{array}{cc} C_i \theta \leqslant d_i, & \forall i \in \{1, ..., J\} \setminus \{j\} \\ C_j \theta \geqslant d_j \\ C_j \theta \leqslant d_j + \varepsilon \end{array} \right. \right\}$$

7: Compute the set $\mathscr{C}(M_j)$ by solving the pQP (1) inside M_j using the algorithm in Bemporad, Morari et al. (2002).

8: for each
$$\mathscr{A} \in \mathscr{C}(M_j)$$
 do
9: if dim $(\operatorname{cl}(\mathcal{O}_{\mathscr{A}}) \cap U) = s - 1$ then
10: $\mathscr{S} \leftarrow \mathscr{S} \cup \{\operatorname{cl}(\mathcal{O}_{\mathscr{A}})\}$. {Adjacent critical re-
gion}
11: else
12: $\mathscr{T} \leftarrow \mathscr{T} \cup \{\operatorname{cl}(\mathcal{O}_{\mathscr{A}})\}$.
13: end if
14: end for
15: end if
16: end if

in an unnecessary increase in the computational effort. This issue will be further discussed in Section 5. Note that $\mathscr{C}(M_j)$ may define additional critical regions that are not adjacent to the critical region considered and/or critical regions that have already been discovered. However, this is not a problem since one can either choose to keep them as identified regions or discard them. In Procedure 2 we have chosen to return all those critical regions which are not adjacent to U and those that have already been discovered; step 8 of Algorithm 1 can be replaced by $\mathscr{U} \leftarrow \mathscr{U} \cup (\mathscr{G} \setminus \mathscr{R}) \cup (\mathscr{T} \setminus \mathscr{R})$ and step 9 by $\mathscr{R} \leftarrow \mathscr{R} \cup \mathscr{G} \cup \mathscr{T}$.

The computational advantages of the algorithm in Tøndel et al. (2003a) compared to the one in Bemporad, Morari et al. (2002) is well documented, so the performance of the proposed procedure relies on how often the conditions in Section 3.2 do not hold. Numerical results will be given in the next section. Before we prove the correctness of the algorithm, we need a technical lemma, which is proven in Spjøtvold (2005).

Lemma 1. Given two s-dimensional closed sets, P and S, in \mathbb{R}^s , such that $int(P) \cap int(S) = \emptyset$. A necessary condition for the set $P \cup S$ to be convex is that

 $\dim(P \cap S) = s - 1.$

Theorem 2 (*Correctness of the Algorithm*). Algorithm 1 combined with Procedure 2 for step 7 ensures that $\bigcup_{k=1}^{K} R_k = \Theta$.

Proof. Assume that \mathscr{R} is the output of the algorithm and that $\bigcup_{R \in \mathscr{R}} R \subset \Theta$. Let

 $\mathscr{P} := \{ \mathrm{cl}(\mathcal{O}_{\mathscr{A}}) \mid \dim(\mathcal{O}_{\mathscr{A}}) = s \text{ for } (1) \} \backslash \mathscr{R},$

and let M_j^R denote the set in Procedure 2 associated with the *j*th facet of $R \in \mathcal{R}$. By the correctness of the algorithm in Bemporad, Morari et al. (2002) and the fact that dim $(cl(\mathcal{O}_{\mathscr{A}}) \cap M_j^R) = s$ if R and $\mathcal{O}_{\mathscr{A}}$ are adjacent along the *j*th facet of R, all full-dimensional critical regions adjacent to R have been identified. Hence, for any pair $(R, P) \in \mathcal{R} \times \mathcal{P}$ we must have dim $(R \cap P) < s - 1$, otherwise P would be a member of \mathcal{R} , and consequently, dim $((\bigcup_{R \in \mathcal{R}} R) \cap (\bigcup_{P \in \mathcal{P}} P)) < s - 1$. Moreover, we have $\Theta = (\bigcup_{R \in \mathcal{R}} R) \cup (\bigcup_{P \in \mathcal{P}} P)$. Hence, by Lemma 1, a contradiction is reached, since Θ is convex.

Fig. 3. Comparison of the number of optimization problems solved by the algorithms.

5. Numerical example

In this section we make a quantitative comparison of the following exploration strategies: (i) the algorithm in Bemporad, Morari et al. (2002), and (ii) the proposed algorithm of combining Algorithm 1 with Procedure 2 for step 7. The algorithms are tested on an MPC problem for a linear time invariant system

$$z(k+1) = \Phi z(k) + \Gamma u(k), \quad z(0) = z_0,$$
(3)

where $z(k) \in \mathbb{R}^4$ and $u(k) \in \mathbb{R}^2$ are the state and input at time k, respectively, and Φ and Γ are matrices with suitable dimensions. The objective is to minimize the following cost function

$$J(z_0) := \sum_{k=1}^{N} (z(k)^{\mathrm{T}} Q z(k) + u(k-1)^{\mathrm{T}} R u(k-1)),$$

where $Q = Q^{\mathrm{T}} \ge 0$ and $R = R^{\mathrm{T}} > 0$, subject to the system equation (3), state constraints $z \in \mathscr{Z} := \{z \mid z \leq z \leq \overline{z}\}$, and input constraints $u \in \mathcal{U} := \{u \mid \underline{u} \leq u \leq \overline{u}\}$. This problem is recast as a pQP as described in Bemporad, Morari et al. (2002) and the algorithms are tested on 80 random instances of $(\Phi, \Gamma, Q, R, \mathcal{Z}, \mathcal{U})$ with a prediction horizon $N \in \{3, 4, 5\}$. For simplicity, all systems are stable, controllable and observable. The solutions have an average of 317 critical regions and Fig. 3 compares the total number of optimization problems solved by the algorithms. As expected, the computational effort used to find an explicit solution is on average lowest for alternative (ii). This shows that alternative (ii) is preferable also in practice. Note that although the performance of the proposed method relies on the choice of ε , it is not difficult to choose a value such that the proposed method is more efficient than the algorithm in Bemporad, Morari et al. (2002). Also, from Fig. 3 it is apparent that the difference in the computational effort is expected to grow as the number of critical regions K increases.

6. Conclusion

It has been shown by an example that, for strictly convex PQMS, a critical region may have more than one adjacent critical region for each facet, hence the facet-to-facet property does not hold, in general. This renders some of the recently developed algorithms for this problem class without guarantees that the entire parameter space will be explored. A simple method based on the algorithms in Bemporad, Morari et al. (2002) and Tøndel et al. (2003a) was proposed such that the completeness of the exploration strategy is guaranteed. Numerical results also indicate that the proposed method is computationally more efficient than the algorithm in Bemporad, Morari et al. (2002) in practice.

Acknowledgments

This research is part of the Strategic University Program on Computational Methods for Nonlinear Motion Control funded by the Research Council of Norway. The second author is a Royal Academy of Engineering Research Fellow and would like to thank the Royal Academy of Engineering, UK, and the fourth author would like to thank the Research Council of Norway for their support.

References

- Baotić, M. (2002). An efficient algorithm for multi-parametric quadratic programming. Technical Report AUT02-05. ETH Zürich, Institut für Automatik. Physikstrasse 3, CH-8092, Switzerland.
- Bemporad, A., Borrelli, F., & Morari, M. (2002). Model predictive control based on linear programming—The explicit solution. *IEEE Transactions* on Automatic Control, 47(12), 1974–1985.
- Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. *Automatica*, 38(1), 3–20.
- Borrelli, F., Bemporad, A., & Morari, M. (2003). A geometric algorithm for multi-parametric linear programming. *Journal of Optimization Theory and Applications*, 118(3), 515–540.
- Grieder, P., Borrelli, F., Torrisi, F., & Morari, M. (2004). Computation of the constrained infinite time linear quadratic regulator. *Automatica*, 40, 701–708.
- Kvasnica, M., Grieder, P., & Baotić, M. (2005). Multi-parametric toolbox (MPT). (http://control.ee.ethz.ch/~mpt/).
- Seron, M. M., Goodwin, G. C., & De Doná, J. A. (2003). Characterisation of receding horizon control for constrained linear systems. *Asian Journal* of Control, 5(2), 271–286.
- Spjøtvold, J. (2005). Facet-to-facet violation for strictly convex parametric quadratic programs: An example. Technical Report 2005-4-W. Department of Engineering Cybernetics, Norwegian University of Science and Technology. Trondheim, Norway. (http://www.itk.ntnu.no/ansatte/ Spjotvold_Jorgen/Publications/).
- Tøndel, P., Johansen, T. A., & Bemporad, A. (2003a). An algorithm for multiparametric quadratic programming and explicit MPC solutions. *Automatica*, 39(3), 489–497.
- Tøndel, P., Johansen, T. A., & Bemporad, A. (2003b). Further results on multi-parametric quadratic programming. In *Proceedings of the 42nd IEEE* conference on decision and control (pp. 3173–3178), Hawaii.