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Abstract: A successful method for model predictive control of constrained linear
systems uses a local linear control law that, in the presence of disturbances,
maintains the disturbed trajectory of the controlled system in a tube whose
centre is the nominal trajectory (generated ignoring the disturbance) and whose
‘cross-section’ is a robust, positively invariant set; robust exponential stability of
an invariant set centred on the origin may be established. The purpose of this
paper is to show how this successful procedure may be extended to provide robust
model predictive control of constrained nonlinear systems. An ancillary problem
is proposed, the solution of which provides a local nonlinear control law. The
disturbed trajectories lie in a tube and this provides the means for constructing a
tube-based robust nonlinear model predictive controller. Copyright c© 2007 IFAC
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1. INTRODUCTION

Uncertainty demands that the optimal control
problem employed in model predictive control
should have a (feedback) control policy rather
than an (open-loop) control sequence as a deci-
sion variable (Mayne et al., 2000). To reduce the
unmanageable complexity of the resultant optimal
control problem it is possible to employ, for con-
strained linear systems, a tube whose centre is the
trajectory of a nominal system and whose ‘cross
section’ is a robust positively invariant set (Mayne
et al., 2005). Robust exponential stability of a
robust positively invariant set is achieved with
a controller that has similar complexity to the
optimal control problem conventionally used in
model predictive control. This paper show how
this procedure may be extended to provide robust
model predictive control of constrained nonlinear
systems.

The system to be controlled is assumed to be
described by a nonlinear difference equation with
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an additive bounded disturbance:

x+ = f(x, u) + w (1.1)

where f(·) is three times continuously differen-
tiable; the system is required to satisfy the state
and control constraints

x ∈ X, u ∈ U (1.2)

where X ⊂ R
n and U ⊂ R

m are C-sets (compact
sets containing the origin in their interior). The
solution of (1.1) at time i if the initial state (at
time 0) is x, and the control is generated by policy
π is φ(i;x, π,w) where w denotes the disturbance
sequence {w(0), w(1), . . .}. The nominal system is
described by

z+ = f(z, v) (1.3)

and its solution at time i if its initial state is z is
denoted by φ̄(i; z,v) where v , {v(0), v(1), . . .}
is the nominal control sequence. The deviation
between the actual and nominal state is e , x− z
and satisfies

e+ = f(x, u) − f(z, v) + w. (1.4)

Because f(·) is nonlinear we have to proceed more
indirectly than in the linear case. We use, as
before (Mayne et al., 2005), a nominal controller
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with tighter constraints than in the original prob-
lem to generate a central path and replace the
pre-derived stabilizing controller u = v+K(x−z)
(employed in the linear case to keep all solutions
of the uncertain system in an invariant set cen-
tered on the nominal trajectory) by an ancillary
controller that uses a modified model predictive
controller to keep solutions close to the central
path. We make use of the fact that, as in the linear
case, it is not necessary to know the invariant set;
we merely need an outer bound for it.

The approach presented in this paper can be
compared with a number of existing robust non-
linear MPC schemes. To overcome the compu-
tational complexities of min-max approaches to
robust nonlinear MPC (Magni et al., 2003), some
methods guarantee robustness by tightening the
constraints of the nominal problem off-line by a
sufficient amount, either by exploiting the con-
tinuity (Grimm et al., 2003) or Lipschitz conti-
nuity (Marruedo et al., 2002) of the dynamics.
Other papers tighten the constraints on-line by
computing bounds on the set of trajectories reach-
able from the current state, either by linearizing
around trajectories (Lee et al., 2002) or via the
computation of approximations to the reachable
set (Limon et al., 2005; Bravo et al., 2006). The
constraints can also be tightened on-line by per-
forming a suitable sensitivity analysis of the fi-
nite horizon optimal control problem (Ma and
Braatz, 2001; Nagy and Braatz, 2003; Diehl et

al., 2006). In this paper, we also propose to tighten
the constraints of the nominal problem — this can
be done off-line (Grimm et al., 2003; Grimm et

al., 2003) or on-line (Ma and Braatz, 2001; Nagy
and Braatz, 2003; Diehl et al., 2006), but the exact
details of how to achieve this is not particularly
important to the method proposed below. The
main difference is that the new method involves
formulating and solving an ancillary MPC prob-
lem, which serves to contain the trajectories of
the actual system in a tube around the nomi-
nal trajectory. This provides a stronger guarantee
of robust stability than is possible with existing
constraint-tightening methods, which only guar-
antee stability of the origin or a bounded set con-
taining the origin (Marruedo et al., 2002; Grimm
et al., 2003). The new method is also computa-
tionally more attractive than bounding the set of
reachable states on-line (Lee et al., 2002; Limon et

al., 2005; Bravo et al., 2006) or performing a min-
max optimization over feedback policies (Magni et
al., 2003). (Rakovic et al., 2006) show how robust
control may be obtained for nonlinear systems
with special structure.

2. SIMPLE ROBUST MODEL PREDICTIVE
CONTROLLER

We describe in this section a robust model predic-
tive controller for nonlinear systems that has two
components: a nominal controller that generates
a central path and an ancillary controller that en-
deavours to steer the trajectories of the uncertain
system to the central path.

2.1 Nominal controller

The cost function V̄N (·) for the nominal optimal
control problem is defined by

V̄N (z,v) , Vf (z(N)) +

N−1∑

k=0

ℓ(z(k), v(k)) (2.1)

where z(k) = φ̄(k; z,v), z is the initial state and
v the nominal control sequence and | · | denotes
the usual Euclidean norm or induced norm. The
function ℓ(·) is defined by

ℓ(x, u) , (1/2)|x|2Q + (1/2)|u|2R (2.2)

where Q an R are positive definite, |x|Q ,

(xT Qx)1/2, etc. We impose the following state and
control constraints on the nominal system:

z ∈ Z, v ∈ V, (2.3)

where Z ⊂ X and V ⊂ U; the terminal cost func-
tion Vf (·) together with the terminal constraint
set Zf ⊆ X are chosen as described in (Mayne et

al., 2000) (to satisfy the ‘stability axioms’). We
do not wish to be too prescriptive in the choice
of Z and V since, unlike in the linear case, we do
not have an invariant set that bounds e = x − z.
For example, if X and U are convex we can choose
Z = αX and V = βU; α ∈ (0, 1) and β ∈ (0, 1)
are scalar tuning parameters whose choice we
discuss below. The state and control constraints,
and the terminal constraint z(N) ∈ Zf impose
a constraint v ∈ VN (z) on the nominal control
sequence where

VN (z) , {v | v(k) ∈ V and φ̄(k; z,v) ∈ Z

∀k ∈ {0, 1, . . . , N − 1}, φ̄(N ; z,v) ∈ Zf}. (2.4)

For each z, the set VN (z) is compact (bounded be-
cause of the assumptions on V and closed (because
of the continuity of φ̄(·)). The nominal optimal
control problem P̄N (z) is defined by

P̄N (z) : V̄ 0
N (z) = min

v

{V̄N (z,v) | v ∈ VN (z)}.

(2.5)
A solution exists because V̄N (·) is continuous and
VN (z) is compact. Let ZN , {z | VN (z) 6= ∅}
denote the domain of V̄ 0

N (z), the set of feasible
states for P̄N (z); by virtue of our assumptions,
the set ZN is bounded. The solution of P̄N (z) is
the minimizing control sequence

v0(z) = {v0(0; z), v0(1; z), . . . , v0(N − 1; z)}
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which we assume is unique, and the associated
optimal state sequence is

z0(z) = {z, z0(1; z), . . . , z0(N ; z)}.

The first element v0(0; z) of v0(z) is the control
that is applied in model predictive control. The
implicit model predictive control law is, therefore,
κ̄N (·) defined by

κ̄N (z) , v0(0; z). (2.6)

The nominal system under model predictive con-
trol satisfies

z+ = f(z, κ̄N (z)). (2.7)

It follows from the definition of V̄ 0
N (·) that there

exists a c1 > 0 such that

V̄ 0
N (z) ≥ c1|z|

2 + c1|v
0(z)|2 (2.8)

for all z ∈ ZN . If the terminal cost function
Vf (·) and terminal constraint set Zf are chosen
to satisfy certain stability assumptions, which we
assume to be the case, and ZN is bounded, there
exists a c̄2 > c1 such that

V̄ 0
N (z) ≤ c̄2|z|

2, and (2.9)

∆V̄ 0
N (z, κ̄N (z)) ≤ −c1|z|

2 (2.10)

for all z ∈ ZN where

∆V̄ 0
N (z, v) , V̄ 0

N (f(z, v)) − V̄ 0
N (z).

It follows that the origin is exponentially stable for
the system z+ = f(z, κ̄N (z)) and ZN is a region
of attraction. For future use, we note that (2.8)
and (2.9) imply the existence of a c̄ > 0 such that

|v0(z)| ≤ c̄|z|, ∀z ∈ ZN . (2.11)

2.2 Ancillary controller

The purpose of the ancillary controller is to main-
tain the state of the uncertain system x+ =
f(x, u) + w close to the trajectory of the nominal
system z+ = f(z, κ̄N (z)); the ancillary controller
replaces the pre-computed controller u = v +
K(x − z) employed in the linear case. To obtain
the ancillary controller, we determine a model
predictive controller that minimizes the cost of
the deviation between the trajectories of the two
systems x+ = f(x, u) and z+ = f(z, κ̄N (z), i.e. we
omit the disturbance w from the uncertain system
and rely on the stabilizing property of the resul-
tant controller to constrain the deviation between
the trajectories of the systems x+ = f(x, u) + w
and z+ = f(z, κ̄N (z)).

The ancillary controller is, therefore, based on the
composite system:

x+ = f(x, u), (2.12)

z+ = f(z, κ̄N (z)). (2.13)

The cost VN (x, z,u) that measures the distance
between the trajectories of these two systems is
defined by:

VN (x, z,u) ,

N−1∑

i=0

ℓ(x(i) − z∗(i; z), u(i) − v∗(i; z))

(2.14)
where x(i) , φ̄(i;x,u) is the solution of (2.12)
at time i if the initial state is x and the con-
trol input sequence is u; z∗(i; z) is the solution
of (2.13) at time i if the initial state is z and
v∗(i; z) , κ̄N (z∗(i; z)). For later use, we define the
sequences v∗(z) , {v∗(0; z), v∗(1; z), . . . v∗(N −
1; z)} and z∗(z) , {z∗(0; z), z∗(1; z), . . . z∗(N ; z)}
where z∗(0; z) = z and v∗(0; z) = κ̄N (z). For
simplicity, we have chosen the cost function ℓ(·)
in (2.14) to be the same function as in the defi-
nition (2.1) of the cost for the nominal controller;
this choice is not necessary. The ancillary control
problem is the minimization of VN (x, z,u) with
respect to u subject to the control constraints and
terminal equality constraint x(N) = z∗(N ; z); this
terminal constraint is chosen for simplicity.

Hence, the ancillary control problem PN (x, z) is
defined by:

V 0
N (x, z) = min

u

{VN (x, z,u) | u ∈ UN (x, z)}

UN (x, z) , {u | φ̄(N ;x,u) = z∗(N ; z),

u(i) ∈ U ∀i ∈ {0, 1, . . . , N − 1}} (2.15)

where UN (x, z) is the constraint set. For each
(x, z), the set UN (x, z) is compact. There is no
terminal cost and the terminal constraint set (set
of permissible terminal states) is a single state:

Xf (z) = {φ̄(N ; z,v∗(z))} = {z∗(N ; z)}.

For each z ∈ ZN , the domain of the value function
V 0

N (·, z) (and of the minimizer) is the set XN (z)
defined by

XN (z) , {x | UN (x, z) 6= ∅}.

For each z ∈ ZN , the set XN (z) is bounded. For
future reference, let the set ΠN ⊂ R

n × R
n be

defined by

ΠN , {(x, z) | z ∈ ZN , x ∈ XN (z)}.

The set ΠN is bounded. For any (x, z) ∈ ΠN ,
the minimizing control sequence is u0(x, z) =
{u0(0;x, z), u0(1;x, z), . . . , u0(N − 1;x, z)} and
the control applied to the system is u0(0;x, z),
the first element in this sequence. The corre-
sponding optimal state sequence is x0(x, z) =
{x, x0(1;x, z), . . . , x0(N ;x, z)}. The implicit an-
cillary control law is, therefore, κN (·) defined by:

κN (x, z) , u0(0;x, z). (2.16)

If x = z, then, as is easily verified,

u0(i;x, z) = v∗(i; z), i = 0, 1, . . . , N − 1 (2.17)
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so that the control and state trajectories of the
two systems (2.12), (2.13) are identical and

κN (z, z) = κ̄N (z). (2.18)

3. CONTROLLER IMPLEMENTATION

Suppose Z and V have been chosen so that Z lies
in the interior of X and V lies in the interior of U.
The controller algorithm is:

Robust control algorithm

Data: Current state (x, z) of the system.

Step 1: Determine the sequences z∗(z) and v∗(z)
where z∗(0; z) = z and v∗(0; z) = κ̄N (z).

Step 2: Solve the ancilliary problem PN (x, z) to
obtain the current control u = κN (x, z).

Step 3: Apply the control u = κN (x, z) to the
system being controlled and measure the successor
state x+ = f(x, κN (x, z)) + w.

Step 4: Set z+ = z∗(1; z) = f(z, κ̄N (z)).

Step 5: Set (x, z) = (x+, z+) (the new current
state) and go to Step 1.

In Step 1, after initialization, the sequences z∗(z)
and v∗(z) may be determined from the previous
sequences by solving P̄N once. In the linear case
u = v + K(x − z), Z = X ⊖ S and V = U ⊖
KS where S is a pre-computed invariant set. In
the nonlinear case, it is possible to formulate a
global optimization problem to choose Z = αX

and V = βU.

4. PROPERTIES OF THE CONTROLLED
SYSTEM

It follows from the definition of VN (·) that there
exists a c1 > 0 such that

V 0
N (x, z) ≥ c1|x−z|2+c1|u

0(x, z)−v∗(z)|2 (4.1)

for all (x, z) ∈ ΠN ; in (4.1), u0(x, z) is the
minimizing control sequence for PN (x, z). Let θ(·)
be defined by:

θ(x, z,u) , φ̄(N ;x,u) − z∗(N ; z)) (4.2)

so that θ(x, z,u) = 0 implies u ∈ UN (x, z);
f(·) twice continuously differentiable implies the
function (x,u) 7→ θ(x, z,u) is twice continuously
differentiable for each z ∈ ZN . We require the
following controllablity assumption:

Assumption 1. (i) There exists a c2 > 0 such that

V 0
N (x, z) ≤ c2|x − z|2 ∀(x, z) ∈ ΠN . (4.3)

(ii) The function f(·) is twice continuously differ-
entiable and, for all (x, z) ∈ ΠN ,

(∂/∂u)θ(x, z,u0(x, z)) = (∂/∂u)φ̄(N ;x,u)

has full rank n where (∂/∂u)θ denotes the matrix
whose ijth element is ∂θi/∂uj with uj denoting
the jth element of u regarded as a vector.

Assumption (i) is a ‘global’ and (ii) a ‘local’
controllability assumption. We note for future use
that (4.1) and (4.3) imply

|u0(x, z) − v∗(z)| ≤ c|x − z| (4.4)

for all (x, z) ∈ ΠN where c = ((c2/c1) − 1)(1/2).

Some properties of the value function are given in
the next result:

Proposition 1. The value function V 0
N (·) satisfies:

V 0
N (x, z) ≥ c1|x − z|2, (4.5)

V 0
N (x, z) ≤ c2|x − z|2, (4.6)

∆V 0
N (x, z, κN (x, z)) ≤ −c1|x − z|2, and (4.7)

V 0
N (f(x, κN (x, z)), f(z, κ̄N (z))) ≤ γV 0

N (x, z)
(4.8)

for all (x, z) ∈ ΠN where γ , 1 − (c1/c2) ∈ (0, 1)
and ∆V 0

N (x, z, κN (x, z)) , V 0
N (f(x, κN (x, z)),

f(z, κ̄N (z))) − V 0
N (x, z).

The value function also has some continuity and
differentiable properties that be summarised as
follows:

Proposition 2. For all z ∈ ZN there exists an
ε(z) > 0 such that (i) the function x 7→ V 0

N (x, z)
is continuously differentiable and, therefore, Lips-
chitz continuous in {z} ⊕ ε(z)B, where B is the
unit ball in R

n and, (ii) the function V 0
N (·) is

continuous at (x, 0) for all x ∈ ε(0)B.

For all z ∈ ZN , all d > 0 let the set Sd(z) be
defined by:

Sd(z) , {x | V 0
N (x, z) ≤ d}. (4.9)

The set Sd(z) is a level set of x 7→ V 0
N (x, z) and

has the following properties:

Proposition 3. For all z ∈ ZN , (i) there exists a
d(z) > 0 such that

S(z) , Sd(z)(z) ⊆ {z} ⊕ ε(z)B.

where ε(z) is defined in Proposition 2, (ii) for all
d > 0, all x ∈ Sd(z),

V 0
N (f(x, κN (x, z)) + w, f(z, κ̄N (z))) ≤ d

for all w satisfying |w| ≤ (1−γ)d/k(z) where k(z)
is the Lipschitz constant for x 7→ V 0

N (x, z) in Sd(z)
(cf Proposition 2).

5. A TUBE FOR THE NONLINEAR SYSTEM

We now construct a tube in which the state of
the controlled system lies for all realizations of
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the disturbance sequence. The composite system
(system and controller) satisfies

x+ = f(x, κN (x, z)) + w (5.1)

z+ = f(z, κ̄N (z)). (5.2)

To define the tube, we require, because of non-
linearity, an extension of the normal definition of
robust positive invariance.

Definition 1. Let d > 0 be given. The point-to-set
map z 7→ Sd(z) is said to be x-robust positively
invariant for the composite system (5.1)–(5.2)
satisfying w ∈ W if, for all z ∈ ZN , x ∈ Sd(z)
implies x+ = f(x, κN (x, z)) + w ∈ Sd(f(z, κ̄N (z))
for all w ∈ W.

The significance of this set lies in the fact that,
if x(0) ∈ Sd(z(0)), then, for all i ∈ Z≥0,
x(i) ∈ Sd(z(i)) for all admissible disturbance
sequences; here x(i) = φ(i;x(0), κN (·),w) is the
solution at time i of x+ = f(x, κN (x, z), w) for a
given disturbance sequence w ∈ W

i and z(i) =
φ̄(i; z(0), κ̄N (·)) is the solution at time i of the
nominal system z+ = f(z, κ̄N (z)). To proceed, we
require

Assumption 2. There exists a d > 0 such that:
(i) for all z ∈ ZN , Sd(z) ⊂ S(z) (which is true
if d ≤ d(z)), and, (ii) W is such that |w| ≤ (1 −
γ)d/k(z) for all w ∈ W, all z ∈ ZN .

We could, alternatively, replace the constant set
W by the set-valued function W(z) , {w |
|w| ≤ (1 − γ)d/k(z)}. In the sequel d is assumed
to satisfy Assumption 2; under this assumption
the following result is a direct consequence of
Proposition 3:

Proposition 4. The point-to-set map z 7→ Sd(z)
is x−robust positively invariant for the composite
system (x+, z+) = (f(x, κN (x, z))+w, f(z, κ̄N (z)).

x(0)

0 1 2 3 4 5 6

x(·)

z(·)

Sd(z(2))

Sd(0)

i
∞

Fig. 1. Tube for a nonlinear system

The main result of this section is

Theorem 1. Suppose that the initial state (x, z) of
the composite system (x+, z+) = (f(x, κN (x, z))
+ w, f(z, κ̄N (z))) satisfies x ∈ Sd(z) and z ∈

0 2 4 6 8 10 12
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1.5
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0.4
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Sample instant

x 2

 

 

nominal (z)
tube MPC (x)

nominal (z)
tube MPC (x)

Fig. 2. Time plot of the states of the example sys-
tem starting from initial condition x = (1, 1).
The solid line shows the trajectory of the
nominal system (5.2) and the crosses show
the state evolution for the actual system (5.1)
for five random disturbance sequences taken
from the set W := {w | |w|∞ ≤ 0.1}.

ZN . Then: (i) every solution of the uncertain
system x+ = f(x, κN (x, z)) + w, w ∈ W, lies
in the tube {Sd(z), Sd(z

0(1; z)), Sd(z
0(2; z)), . . .}

for all w = {w(0), w(1), . . . w(i − 1)} ∈ W
i, all

i ∈ Z≥0, and, (ii) every accumulation (cluster)
point of every solution of the uncertain system
x+ = f(x, κN (x, z)) + w lies in the positively
invariant set Sd(0).

6. EXAMPLE

Consider the following simple example with one
input and two states:

x+
1 = x2 + w1, x+

2 = sin(x1) + u + w2,

where we have no state constraints, but only the
input constraints U := {u | |u| ≤ 0.5}. For
simplicity, we choose the terminal constraint for
the nominal problem to be the origin Zf := {0}
and the terminal cost to be zero Vf (z) := 0. The
input constraints for the nominal problem are set
to V := {v | |v| ≤ 0.475}, which corresponds to
a choice of β2 := 0.95. Figure 2 is a time plot of
the states of the system for a choice of horizon
length N := 6. As can be seen, the trajectories of
the actual system with disturbances (5.1) remain
in a ‘tube’ around the trajectory of the nominal
system (5.2).

7. CONCLUSION

We have proposed a method for robust model
predictive control of nonlinear systems with an ad-
ditive bounded disturbance. The controller solves,
at each time, two optimal control problems, one
which solves a standard problem for the nominal
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system with tightened constraints (the solution
of which defines a central path) and an ancillary
problem (the solution of which steers the state
of the towards the nominal trajectory thereby
keeping the actual trajectories in a tube whose
centre is the nominal trajectory). To keep the
controller as simple as possible, we have chosen
simple options for these two problems; for the
nominal problem, we do not use the initial state as
a decision variable, and for the ancillary problem
we fix the terminal state rather than specifying a
terminal cost function and terminal constraint set
and discard the state constraints. Incorporation of
a terminal cost function and terminal constraint
set would increase complexity though other ad-
vantages might accrue.

Appendix A. OUTLINE OF PROOFS

Proposition 1: Inequality (4.5) follows from the
postive definiteness of Q, (4.6) by assumption and
(4.7) by standard arguments.

Proposition 2: (i) The proof of this result
uses the fact that v∗(z) is also the global so-
lution of PN (z, z) (u0(z, z) = v∗(z)) and that
V 0

N (z, z) = 0. It then uses the implicit function
theorem (Ortega and Rheinboldt, 1970) and the
fact ∇uVN (z, z,v∗(z)) = 0 and ∇uu(z, z,v∗(z)) =
R > 0 to show that there exists a neighbourhood
{z} ⊕ ε(z)B of z and a function νz(·) such that
νz(x) satisfies necessary conditions of optimality
for PN (x, z) at all x in this neighbourhood. It is
then shown that ε(z) can be chosen so that νz(x)
is the global minimizer for PN (x, z) in {z}⊕ε(z)B
and that νz(·) is continuously differentiable. (ii)
This result follows from similar arguments using
the additional fact, easily established, that θ(·) is
continuously differentiable at z = 0.

Proposition 3: (i) This follows easily from
(4.5). (ii) Using the Lipschitz continuity of x 7→
V 0

N (x, z) and (4.7) we obtain V 0
N (f(x, κN (x, z) +

w, f(x, κ̄N (z)) ≤ γV 0
N (x, z) + k(z)|w| ≤ d if |w| ≤

(1 − γ)d/k(z) and x ∈ Sd(z).

Proposition 4: This is a consequence of Propo-
sition 3 (ii) and Definition 1.

Theorem 1: (i) Follows directly from Proposition
4. (ii) The infinite sequence {z(i)} converges to
the origin. Also, by Proposition 3(ii), every accu-
mulation point x̂ of the infinite sequence {x(i)}
satisfies V 0

N (x̂, 0) ≤ d. Hence x̂ ∈ Sd(0).
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