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Abstract—From a lattice viewpoint, Clarkson, Sweldens and
Zheng significantly reduced the complexity of multiantenna
differential decoding. Their approximate decoding algorithm,
however, has not unleashed the full potential of lattice decoding.
In this paper, we present several improved algorithms, generally
referred to as differential lattice decoding (DLD), for multiantenna
communication. We first analyze two distinct approximate DLD
algorithms, and then develop an algorithm that exactly finds
the closest lattice point in the Euclidean space. This exact DLD
is subsequently augmented by local search to compensate for
the remaining approximation. The small amount of extra com-
plexity of the exact or augmented DLD is rewarded by a clear
performance gain. We find that employing basis reduction is very
effective to reduce the overall decoding complexity for high lattice
dimensions. Moreover, the dimension of the lattice defined in this
paper is independent of the number of receive antennas, which
results in not only lower complexity, but also better performance
for a multiantenna receiver.

Index Terms—Basis reduction, differential modulation, lattice
decoding, multiantenna communication, sphere decoding.

1. INTRODUCTION

NE OF THE MAIN motivations of using multiple-input—

multiple-output (MIMO) wireless communication is to
support very high data rates. This however makes a naive max-
imum-likelihood decoder (MLD) quickly become impractical,
as its complexity grows exponentially with the data rate. Con-
sequently, it is crucial to develop efficient decoding algorithms
for high-rate MIMO systems. Lattice decoding has recently re-
ceived great interests in MIMO research due to its low average
complexity for many communication problems. See [1]-[3] for
an overview of lattice decoding and [4] and [5] for early applica-
tions to communications. Generally, lattice decoding consists of
two major stages—basis reduction and enumeration of nearby
lattice points, the latter of which is often called sphere decoding
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in communication literature following [5]. The first stage se-
lects a short and fairly orthogonal basis, usually by using the
Lenstra—Lenstra—Lovasz (LLL) algorithm [6], while the second
finds the closest lattice point from those falling inside a sphere
centered at the query point [7]-[9].

Like most techniques for coherent MIMO communication,
the principle of lattice decoding is also applicable to nonco-
herent systems where channel estimation is difficult or uneco-
nomical. Differential space—time modulation (DSTM) [10], [11]
is a noncoherent MIMO scheme specially tailored for continu-
ously fading channels. Notably, Clarkson et al. [12] gave an el-
egant lattice formulation of diagonal DSTM and developed fast,
approximate differential decoding (DD)' based on the LLL basis
reduction. The achieved complexity is polynomial in the number
of transmit antennas. This technique has been extended to some
nondiagonal constellations [13], [14] and to decision-feedback
differential detection (DF-DD) [15]. The concern of these pa-
pers is the application rather than the investigation of the fast
decoding algorithm itself.

In this paper, we present several improved fast algorithms of
conventional DD and DF-DD for diagonal DSTM by employing
the principle of lattice decoding, which are generally referred to
as differential lattice decoding (DLD). As pointed out in [12],
there are three approximations associated with component wise
rounding in an LLL-reduced lattice. We eliminate two of these
by using exact DLD which finds the closest lattice point exactly.
The remaining approximation of the cosine function is, how-
ever, inherent with the lattice formulation. We therefore aug-
ment DLD by local search with the cosine measure, which gives
performance indistinguishable from MLD. It is shown that both
exact and augmented DLD can be sped up significantly if the
basis is LLL-reduced. Moreover, the decoders under our formu-
lation always work with an n--dimensional (n-D) lattice for a
system with np transmitter antennas and n g receiver antennas,
while the decoder in [12] needs to define an nyng-D lattice.
Not only does this formulation reduce the decoding complexity,
the performance also improves since the approximations are less
accurate for higher dimensional lattices.

The paper is organized as follows. Section II gives the system
model of DSTM and a brief review of the lattice formulation
for conventional DD and DF-DD. The improved formulation
of an np-D lattice for multiple receive antennas is integrated
with the review. Approximate, exact, and augmented DLD are
presented in Section III. Here, we clearly distinguish between
two approximate DLD approaches, which is not addressed in
[12]. Numerical results on the performance and complexity of

ITn line with the literature of lattice decoding, “decoding” and “detection” are
used interchangeably in this paper.
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various decoders are reported in Section I'V. Finally, conclusions
and discussion are given in Section V.

Notations: Throughout this paper, matrices (vectors) are rep-
resented in bold upper (lower) case, I,, denotes the n-by-n iden-
tity matrix, (-)* complex conjugate, (-)7 transpose, (-)* Hermi-
tian transpose, tr(-) trace, diag(-) denotes forming a diagonal
matrix from a vector, ||A||2 = tr(AA®) denotes the Frobenius
norm, and [ - | denotes rounding toward the nearest integer.

II. LATTICE FORMULATION
A. System Model

Consider an n X ng DSTM system over a flat, time-selec-
tive fading channel, where the time selectivity is described by
the Jakes model [16] for instance. Transmitted signals are orga-
nized into an ny X nr matrix S[r], where row indexes repre-
sent different antennas and column indexes represent time in-
stants 7nr, ..., Tnr + np — 1. The matrix is properly normal-
ized so that the average power of each column is one. The total
transmitted power, therefore, does not depend on the number of
transmit antennas.

The constellation G of a rate-R,. (bits/channel use) DSTM
system is comprised of L = 2%<"7 unitary matrices G;, [ €
{0,---,L — 1}, of size ny X nr each. The R.nr bits to be
transmitted at time instant 7ny are mapped to an L-ary symbol
a[r], which selects an element G ,[;] from G. Signal matrices are
then differentially encoded as S[r] = S[7 —1]Gy ;] with S[0] =
I,,.. The diagonal constellations of Hochwald and Sweldens
[11] have the form

j2muy Jj2runp

G; = (G,)!, where G, =diag |[e" T ,---,e T ,

0<I<L

and the integers u,, € {0,1,...,L—1}for1 <m < nr.Gis
a cyclic group under matrix multiplication. One may set u; = 1
without loss of generality. The generator u = [1,ug, ..., Up,]
is searched to maximize the diversity product [11].

Since there is a single transmit antenna active at each time in-
stant for diagonal constellations, we define an nz X nr channel
matrix H[7] where the (¢, j)th entry h; ;7] denotes the fading
coefficient between receive antenna ¢ and transmit antenna j at
time instant 7np + j. Accordingly, the received signals can be
expressed by

Y[r] = VpH[7]S[r] + W[r] (D

where W{r] is the corresponding noise matrix. The entries of
both H[7] and W] are independent across space and time, and
are identically complex normal CA(0, 1) distributed. Because
of the power normalization, p is the average signal-to-noise ratio
(SNR) at each receive antenna. In the Jakes model, the correla-
tion after & time samples of h; ;[7] is given by Jo(27 fanrk),
where Jo(.) is the zeroth-order Bessel function of the first kind,
and f; is the normalized Doppler shift with respect to the scalar
symbol period. Note that with this signal model for diagonal
constellations, the effective Doppler shift of the fading process
is multiplied by a factor of n.
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B. Improved Problem Formulation
The maximum-likelihood (ML) DD for diagonal constella-
tions is given by
aMLr] = arg min | Y [r] — Y[r — G|

= arg n1laX Re [tr (GZYH[T]Y[T - 1])]

nr mnNgR

= argmax Z ZRe

m=1 k=1
2ruml
x [y Iyl = 11] @

Noticing that e727“m!/I does not depend on index k, we may
rewrite the MLD as

nr
~ ML,

= R
a [T argmlaxg e

m=1

X KZ Yie,m [ T]Ype,m [T — 1]) Q—M] .

Define

ol=

A, =

nR
> Yk Tl — 1]
k=1

L S
¢m, = g arg <Z Yk,m [T]ylt,m, [T - 1]) (3)

k=1

where arg(-) has range [—m, ) so that ¢,,, € [—L/2,L/2).
Then, we have

A ML < 2 (uml — ¢m)2m

a ] = arg m?xmz:; A% cos [ T } @
Apparently, the complexity of MLD is proportional to L. In
other words, it is exponential in the number of transmit antennas
and the rate. Equation (4) is formally the same as [12, eq. (11)],
but integrates the case of ng > 1. This reduces the number of
summands by a factor of np (cf. [12, eq. (24)]).

To derive a fast decoder, a lattice viewpoint is adopted in [12].
Since the cosine function is 27 periodic, the argument can be
restricted to [—, 7) without loss of generality. The argument
of the cosine function in (4) can, thus, be rewritten as [(u,! —
¢m)mod™ L]2m /L, where mod”™ takes values in [—L/2, L/2).
The vectors lumod* L for] = 0, ..., L —1 form a finite integer
lattice. Furthermore, an approximation cosa ~ 1 — a?/2 is
made in [12]. This brings the lattice decoder into a Euclidean
space. The best solution in the Euclidean space

nr
de"d[T] = arg mlin Z [(Amtml — Amgbm)mod*AmL]2

m=1
(&)
is supposed to be a good approximation of the ML decision,
because the cosine approximation is locally accurate near the
maximum at o = 0. If we define a basis

AQ’U,Q AQL 0
B:[b17b27"'7bn7~]: : : . :
Aptln, 0 o AL
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the point set {Bx : x € Z"7} will form an infinite lattice in
R™7. Denote by t the target vector with components A, ¢, .
The decoding problem (5) can be recast into a standard closest
(lattice) vector problem (CVP), in which an integer vector X €
Z"™ is to be found such that ||[Bx — t||? is minimized. It is seen
that mod™ A L is artfully omitted in || Bx — t]|2. Such decoding
in an infinite lattice has the convenient feature that no boundary
control is needed. Accordingly, the decision is given by

a®*[7] = &, mod L (6)

and the omission of mod™ A; L does not affect the exactness of
the solution to (5).

In essence, the ML Voronoi region is approximated by a poly-
tope in the above lattice formulation. The approximation is quite
accurate in low dimensions, but may be less accurate in high di-
mensions. It is worth mentioning that in our formulation, the
lattice always has dimension nr, regardless of the value of ng.
This is in contrast with [12, (24)], where an nyngr-D lattice
would be needed. Thanks to the notation (3), we know an np-D
lattice is sufficient to define the decoding problem [cf. (4)].
Therefore, our formulation will improve the performance, as
well as the speed of DLD for a multiantenna receiver.

C. DF-DD

Because of the np-fold Doppler shift, conventional DD easily
suffers from an irreducible error floor in fast-fading channels.
Linear predictive DF-DD is an appealing technique of improve-
ment for diagonal constellations. To mitigate the error floor,
DF-DD makes use of the observations during the past few time
epochs [15]. More precisely, it takes the form

afr] = arg max Re

N
tr (GlYH[T] Z pn Y [T — 1]

n=1
n—1
X H Gaﬁ-@])] @)
=1

where N is the prediction order, p,, forn = 1,..., N are pre-
dictor taps, and H;:ll Gapr—i 2 L., if n = 1. Clearly, the
lattice formulation is valid for DF-DD verbatim, if we replace
Y|[r — 1] in (2) by the sum in (7) that corresponds to linear pre-
diction. Again, an np-D lattice suffices and there is no need in
going to an npng-D lattice as in [15].

III. DIFFERENTIAL LATTICE DECODING

In this section, we present several procedures to approxi-
mately or exactly find the closest lattice point x € Z"" and
give a further improvement when the performance loss due
to the cosine approximation is not negligible. All procedures
are applicable to both conventional DD and DF-DD obviously.
Since the basis B is a function of A4,,’s and in turn by received
signal matrices [cf. (3)], it constantly changes over time, and
basis reduction and QR decomposition have to be repeated
for each 7. This is an important distinction from the ordinary
application of lattice decoding in quasi-static fading.
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A. Approximate DLD

Basis reduction alone can be used to solve CVP approxi-
mately. Ideally, if the basis were orthogonal, simple rounding
off would find the closest lattice point. This is the rare case
in reality, and basis reduction attempts to select a nearly or-
thogonal and short basis. The celebrated LLL algorithm finds
a basis within an exponential factor from the shortest in poly-
nomial time [6], which requires O(n}.) arithmetic operations.
The reduced and unreduced bases are related by B,, = BU,
where U € Z"*™ s a unimodular matrix with determinant
det(U) = £1.

Babai [17] gave two procedures for solving the approximate
CVP in an LLL-reduced lattice. In the context of DLD, Babai’s
procedures can be rephrased as follows. Let the Gram-Schmidt
orthogonalization of the reduced basis B,. be B, = lgr[uij]T
and ( = ]:%T_ Lt. Then, the closest vector, up to a certain factor
is, respectively, given by the following.

* Rounding off (LLL-ZF): x = U[B't].
* Nearest plane (LLL-SIC): X = Uz, where 2, = [(uy ]
and éj = |—CJ - Zzzj—i-l éilffijj fOI’j =nr — 1, ey 1.

The complexity of both procedures is negligible in compar-
ison with LLL reduction. It can be seen that the rounding off
procedure is equivalent to zero-forcing (ZF) detection in com-
munications, while the nearest plane procedure is equivalent to
nulling and successive interference cancellation (SIC) detec-
tion of the vertical Bell Labs layered space—time architecture
(V-BLAST) without ordering. It is shown in [2] that V-BLAST
ordering cannot improve the performance over the natural or-
dering of the nearest plane procedure for an LLL-reduced lat-
tice, although it is beneficial for an unreduced lattice. This is
because ordering is equivalent to a series of swapping opera-
tions, which have already been done in LLL reduction. As such,
we will not consider ordering for approximate DLD in a reduced
lattice.

Due to the incorporation of decision feedback, LLL-SIC has
better performance than LLL-ZF. Thus, it is important to make
a clear distinction between the two decoders. The “component
wise rounding” in [12] is just Babai’s rounding off procedure,
though this is not explicitly pointed out therein.2 In the rounding
off procedure, the polyhedral Euclidean Voronoi cell is further
approximated by a parallelepiped [12, Fig. 3]. In the nearest
plane procedure, it is better fitted by a cuboid, as will be demon-
strated in the following example.

1) Example: We reexamine the case considered in [12],
where np = 2,u=[19]7, L = 32,and A; = A, = 1. Fig. 1
shows the decision regions of the origin for different decoders.
The Euclidean Voronoi cell is the solid-line hexagon. Suppose
the shortest basis vectors [4 4]T and [3 — 5] are identified
successfully. Then, the dash-dotted diamond is the decision
region for the ZF decoder. The two orthogonal vectors resulting
from Gram—-Schmidt orthogonalization are given by [4 4]7" and
[4 — 4] Thus, the SIC decision region is the dotted rectangle
(in fact a square in this special case). Apparently, the SIC
decision region has more overlap with the Euclidean Voronoi

2While [12, eq. (22)] is a property of the nearest plane procedure, the hat over
b; there might be a typo.
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Fig. 1. Decision regions of the origin (I = 0) for MLD, ZF, and SIC. The two

small filled triangles represent the extra overlap due to SIC.

cell, thereby resulting in improved performance. The two small
filled triangles represent the additional overlap due to SIC.

The decision regions such as those in Fig. 1 bear useful in-
formation. Study of the minimum squared Euclidean distance
(MSED) can tell how much LLL-ZF/SIC is in proximity to
MLD. In the Appendix, we show that, for any LLL-reduced lat-
tice, the MSED loss (in decibels) is linear with the dimension
of the lattice for both ZF and SIC, while SIC has a slower in-
creasing rate. Loosely speaking, this means that the error-rate
curve of approximate DLD will parallel that of MLD at high
SNR, with a horizontal translation (in decibels) linear with the
dimension. In view of this analysis, the superiority of our np-D
model in Section II-B is clear, since a lower dimension means
less performance loss.

B. Exact DLD

As noted in [12], besides the cosine approximation, there are
two other approximations associated with LLL-ZF or LLL-SIC
that make it a suboptimum lattice decoder: The Euclidean
Voronoi cell is approximated by a parallelepiped or cuboid, and
the LLL algorithm does not necessarily find the shortest basis.
Here we apply sphere decoding to solve the CVP exactly, which
has low average complexity [4], [18] for many communication
problems at high SNR. In Fig. 1, the Euclidean Voronoi cell
corresponds to the decision region of sphere decoding. In the
original form of sphere decoding, the Pohst-Fincke strategy [7],
[8] enumerates all lattice points satisfying ||Bx — t||> < R2,
where R denotes the chosen radius of the sphere. To determine
the closest point, it is typical to decrease R accordingly once
a closer point is obtained. Since the Schnorr—Euchner strategy
[9] is more efficient in closest lattice point search, it is adopted
here for DLD.

In sphere decoding, a basis is first transformed into its upper
triangular representation by QR decomposition. Alternatively,
it can be transformed into the lower triangular representation by
QL decomposition. As the DSTM basis B is already lower trian-
gular, it looks plausible to decode on B directly. This, however,
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turns out to be extremely inefficient. This is because A1, the first
diagonal element of B, is typically much smaller than the other
diagonal elements A,, L. It easily leads to early errors that are
quite wasteful. Consequently, this method will not be consid-
ered, and we follow the usual QR decomposition. Noting that
B is a square matrix, we have the QR decomposition B = QR,
where Q is an orthogonal matrix with positive diagonal ele-
ments, and R is upper triangular. The constraint ||Bx — t||? <
R? can be put in an equivalent form
|IRx —t'||> < R?, where t' =Q't.

This can be solved successively by back substitution, starting
at the last element of x. Moreover, since the lattice is infinite,
no boundary control is necessary and the subroutine of the
Schnorr—Euchner search given in [1] can be applied readily.
The initial radius of the Schnorr—Euchner strategy can be set to
infinity, and the first point found corresponds to the SIC decision
(also referred to as the Babai point). In the Schnorr—Euchner
strategy, every time when a closer lattice point is found, it is
stored as a potential output point, the radius R is decreased to
the distance between this point and the query point, and the
algorithm backtracks without restarting. The final output of the
decoder gives the closest lattice point.

There are a number of ways of preprocessing or ordering to
speed up the sphere decoder [1]-[3]. We compare their applica-
tions to DLD in the following.

1) Basis Reduction: Basis reduction is an essential prepro-
cessing stage of lattice decoding, which improves the speed of
sphere decoding drastically. For a finite lattice, basis reduction
is sometimes considered inconvenient, as the boundary control
is complicated in the reduced lattice [3]. Such an issue does not
exist in an infinite DSTM lattice. It raises another issue though,
that is, basis reduction needs to be reperformed for every in-
coming symbol. Consequently, it has a significant impact on the
overall complexity of the DLD, unlike the usual scenario where
the channel remains constant for a long time so that the com-
plexity of basis reduction is negligible. In high dimensions, basis
reduction will usually constitute a major computational burden
of DLD. Nonetheless, it is still the fastest solution in our con-
text for large values of nr, as will be shown in the next section.
The reason is that the subsequent sphere decoding will typically
be much faster, thanks to the nice structure of a reduced basis.
It only adds a fraction of complexity to LLL-ZF or LLL-SIC.
Suppose x,. is the closest vector on the reduced basis B,., then
its representation in the original lattice is given by x = UX,..

2) Ordering: For an unreduced lattice, the order in which
the components of x are decoded may strongly influence the
decoding speed. Ordering corresponds to choosing a column
permutation matrix II such that the new basis B’ = BII has
some desirable properties. Suppose x’ is the closest vector on
the ordered basis B’, then we have the relation x = IIX’. Again,
since the basis B changes every time, ordering needs to be
redone for each incoming received signal matrix. Generally,
the computational overhead of ordering is not negligible. The
V-BLAST ordering is widely applied prior to sphere decoding
for MIMO systems. To reduce the O(n%) complexity of the
original V-BLAST ordering, several O(n3.) methods have been
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proposed in literature (see, e.g., [19] and references therein). As
will be demonstrated in the next section, while ordering itself
is faster than LLL reduction, the latter results in substantially
faster overall decoding in high dimensions.

Fincke and Pohst [8] suggest column ordering according to
norms between basis reduction and sphere decoding. We ob-
serve little acceleration of sphere decoding, however, if the basis
has been LLL-reduced. This observation agrees with coherent
lattice decoding [2], and can also be interpreted as the conse-
quence of the fact that ordering is a swapping-only operation.
This ordering method is applied in [3] to an unreduced lattice,
which is less effective than V-BLAST ordering.

C. Augmented DLD

Although the sphere decoder finds the closest lattice point in
the Euclidean space, the cosine approximation remains to be a
suboptimum factor, especially in high dimensions. Since the co-
sine approximation is locally accurate, a local search with the
cosine measure would largely compensate for the suboptimality.
This is tantamount to enumeration of all lattice points inside
a sphere, which is exactly achieved by the Pohst—Fincke algo-
rithm [7], [8]. When doing this, it will not shrink the radius R
even if a closer point is found. The only distinction of our algo-
rithm is that we make the enumeration for the one maximizing
the MLD metric

A s 9 (uml — dm)2m
M = Z Az, cos [T .

m=1

It is easy to integrate the MLD metric into the Pohst-Fincke
enumeration. Namely, each time a lattice point x, is found, it
is converted into the original lattice x = Ux,. (if the lattice is
reduced), | = x7 mod L is obtained, and M, is compared to
the maximum metric M so far. If M 1 is larger, M is replaced
by M;, and the most likely symbol [ so far is replaced by [ as
well. After the enumeration terminates, [ is the desired output.
Note that the unimodular matrix U does not change with the
particular point once the basis has been reduced.

The Schnorr—Euchner strategy can also be modified to
enumerate all lattice points inside a sphere for one with the
maximum MLD metric. When it finds a point (namely, the first
element x; is reached) inside the initial radius R, it takes three
different actions: 1) R is never changed; 2) it searches for all
possible values of z; of in-sphere points rather than just the
best one before backtracking; and 3) the pair (!, M) is updated
as described above. The Schnorr—Euchner strategy and the
Pohst—Fincke strategy have similar complexity in enumeration
of all lattice points inside a sphere. Either one can be applied
to augmented DLD.

Augmented DLD differs from the list sphere decoder of [20]
in that we do not maintain a list of candidates. We only store the
most likely symbol [ so far. In this way, we make full use of the
lattice points inside the sphere. Then, it is crucial to select the
proper initial radius R for augmented DLD. A too large value of
R will slow down the decoder because many points need to be
enumerated. On the other hand, if R is too small, then probably
no other points will be found and the performance cannot be im-
proved. To determine an appropriate value of R, let us examine
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Fig. 2. Initial radius R of augmented DLD is not much larger than d. In the

upper-right corner the vicinity of t is enlarged.

the scenario in which the exact DLD errs, whereas the MLD
makes a correct decision. It is over here that the improvement of
augmented DLD should take place if there is any. This scenario
happens if the query point t € VM 1 V™", where VM" and
yeuel denote the ML and Euclidean Voronoi cell, respectively.

1) Example: Fig. 2 demonstrates such a scenario in the lat-
tice of Fig. 1. The ML Voronoi cell is the closeup of dashed lines,
where two lattice points have equal likelihood (i.e., they are pair-
wise decision boundaries.) VM and VUl are virtually indis-
tinguishable for this lattice (but they may differ more for certain
channel realizations or in high dimensions.) For visual ease, the
vicinity of the query point t is enlarged in the upper-right corner,
which shows that the exact DLD decides in favor of [ = 25,
whereas the most likely point is in fact [ = 0. Clearly, the dis-
tance dyir, between t and [ = 0 is approximately equal to the
distance d, between t and [ = 25. Accordingly, to include the
ML decision in the sphere, the radius R does not need to be
much larger than d;.

Generally, the scenario only happens if t is near the boundary
of Veuel since the cosine approximation is locally accurate. In
other words, the most likely point is not much further from t
than the sphere decoder output. Thus, R only has to be slightly
larger than ds. We may choose R = adgs, where & > 1 1is a
small constant usually less than three. This way we ensure that
not too many points are examined by the augmented DLD. This
choice requires the sphere decoder to carry out a second round
of search using new radius R. If lattice reduction is performed,
we may simply set R = ad(t,%X) > ads, where X is the output
of LLL-ZF or LLL-SIC. Only a single round of search is needed
by this approach. While this choice is weaker, the complexity is
not much increased, as the LLL-based decision coincides with
that of sphere decoding with high probability.

Our empirical results suggest that the overall complexity of
augmented DLD is on the same order of the LLL algorithm. Itis
simpler than another improved decoder based on basis reduction
presented in [21], whose complexity is a multiple of that of the
LLL algorithm (it works for a finite lattice though).
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Fig. 3. Symbol error rate of conventional DD for R = 2, nr = 4,ng = 1,
and f; = 0.0025.

IV. NUMERICAL RESULTS

In this section, we compare the performance and complexity
of different schemes of conventional DD and DF-DD for di-
agonal constellations. The performance index is the error rate
of DSTM symbols, as bit mapping is of secondary importance
to this paper. The Jakes fading model is employed in computer
simulation. Constellations are drawn from [11, Table I] if avail-
able. Clearly, the performance of sphere decoding is indepen-
dent of what kind of preprocessing or ordering is used, though
the complexity may vary significantly. The Schnorr—Euchner
strategy is followed in augmented DLD, and we set the ini-
tial radius as R = 2d(t,%), where X is the output of LLL-
SIC. Surprisingly, with this simple choice of R we have not
observed a single discrepancy between MLD and augmented
DLD, throughout all comparisons made in simulation. If MLD
is deemed too time consuming, we plot the union bound for
MLD derived in [15], which is sufficiently tight at high SNR.
For DF-DD, the depicted union bound is of a genie-aided (i.e.,
correct feedback) detector, which is often a good approximation
of the real-error rate.

Fig. 3 shows the performance of conventional DD for R = 2,
nr = 4,ng = 1, and fy; = 0.0025. Our results slightly differ
from [12, Fig. 5] at high SNR, but the simulated performance
for MLD has excellent match with the analytic union bound. It
is seen that LLL-SIC has better performance than LLL-ZF. Note
also that the performance of LLL-SIC is close to that of MLD,
which is typical of low-dimensional DD. The decisions of aug-
mented DLD and MLD are compared verbatim; no difference is
found. Thus, their performance is depicted by the same line.

Conventional DD utilizing an nr-D lattice is compared with
nrnr-D lattice decoding in Fig. 4, for the above setting but with
ngr = 4. It is seen that LLL-ZF is susceptible to the lattice di-
mension; decoding in a 16-D lattice leads to performance loss
of about 1.5 dB at high SNR, despite its higher complexity. In
comparison, LLL-SIC differs by 0.5 dB only. Again, the perfor-
mance of LLL-SIC in a four-dimensional (4-D) lattice is close to
MLD. In addition, we can see that when the lattice dimension is
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Fig. 5. Symbol error rate of conventional DD for R = 2, nr = 8, ng = 1,
and f; = 0.001.

reduced by a factor of 4, the performance gap between LLL-ZF
and MLD is reduced by a factor of 4. This is no coincidence; it
is in complete agreement with the analysis in the Appendix.

The performance gain of exact and augmented DLD
in conventional DD is apparent in Fig. 5 for R = 2,
nr = 8 ng = 1, and f; = 0.001. We just pick
a good (but not necessarily the optimum) constellation
u = [1 1551 3693 5951 10593 10643 25213 29893]7 found in
random search. It is seen that augmented DLD is over 0.5 dB
better than LLL-SIC at high SNR, and the gap between LLL-ZF
and LLL-SIC is expanded to 1.5 dB. Exact DLD lies between
LLL-SIC and augmented DLD. Remarkably, the performance
of augmented DLD approaches the union bound for MLD as
the SNR grows. It means that the performance loss due to
the cosine approximation is practically recovered. Since this
constellation size (I = 65536) is very large, we only compare
100 trials of MLD with augmented DLD for each SNR. Every
trial sees exactly the same decisions.
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TABLE 1
PER-SYMBOL COMPLEXITY (IN KILOFLOPS) OF CONVENTIONAL DD OVER A CHANNEL WITH f; = 0.0025 AND SNR = 20 dB

np R, I MLD DLD w/ LLL Reduction Sphere Decoding w(/o) Ordering
LLL-ZF LLL-SIC Exact Augmented w/o Norm V-BLAST
2 1 0.09 0.21 0.30 0.28 0.40 0.14 0.17 0.30
31 8 0.24 0.60 0.84 0.81 1.07 0.33 0.43 0.83
4 1 16 0.60 1.34 1.87 1.74 2.42 0.68 0.86 1.73
5 1 32 1.46 2.36 3.41 3.14 4.17 1.24 1.53 3.14
6 1 64 3.48 391 5.71 5.26 6.96 2.38 2.56 5.16
2 2 16 0.31 0.26 0.34 0.32 0.47 0.14 0.17 0.30
3 2 64 1.75 0.75 1.04 0.97 1.30 0.42 0.46 0.85
4 2 256 9.24 1.62 2.23 2.12 2.67 1.29 1.07 1.83
5 2 1024 461 3.27 429 4.08 5.17 6.39 3.51 4.18
6 2 4096 221 5.13 7.08 6.29 8.31 18.1 9.36 8.31
2 3 64 1.17 0.28 0.36 0.33 0.49 0.16 0.20 0.32
3 3 512 13.8 0.68 0.93 0.85 1.37 0.58 0.62 1.06
4 3 409 147 1.71 2.25 2.05 3.01 3.32 2.30 2.06
5 3 32768 1470 3.50 4.54 4.28 5.96 26.7 321 17.1
6 3 262144 13000 5.87 6.81 6.89 10.6 118 182 105

Symbol Error Rate
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Fig.6. Symbol errorrate of DF-DD for R = 2,ny = 5,ng = 1, f; = 0.01,
and N = 3.

Fig. 6 illustrates the performance of DF-DD for R = 2, np =
5 ng = 1, f4 = 0.01, and N = 3. The union bound for
conventional DD is also included as a benchmark. Once again
no different decoding outcomes of augmented DLD and MLD
are observed. It is seen that LLL-SIC improves over LLL-ZF
by 1 dB at high SNR. The augmented DLD improves further by
1 dB, and agrees with the MLD bound excellently.

Generally, the improvement of exact and augmented DLD
tends to be more visible in high dimensions or DF-DD. The
former is an effect of the respective approximation of the
Voronoi cell; the latter might be an effect of the feedback of
occasionally erroneous decisions.

To evaluate the computational complexity, we count the
average number of flops required to decode each incoming
DSTM symbol. This measure is quite meaningful, as it is
largely independent of the particular processor and program-
ming environment. Moreover, it reflects the real hardware

complexity more objectively than other measures such as CPU
running time. Table I shows the average numbers of flops per
detected symbol for various schemes of conventional DD over
a channel with f; = 0.0025 and SNR = 20 dB. The similar
trend has been observed for DF-DD. The ratio between the
data for MLD and LLL-ZF differs somewhat from [12], but the
trend is the same. It is clear that LLL-ZF, LLL-SIC and exact
DLD with LLL reduction have similar complexity. Since we
do not store the orthogonal vectors in LLL reduction, the QR
decomposition makes LLL-SIC slightly more complex than
LLL-ZF. Augmented DLD with LLL reduction and SIC initial
radius has less than the double complexity of LLL-ZF. All of
these four algorithms are faster than MLD for constellation size
L > 64. Ordering? is not effective in complexity reduction of
sphere decoding here. This is because the advantage of ordering
in complexity reduction will not appear until the dimension is
quite large (>30) [3, Fig. 8]. Sphere decoding with or without
ordering is faster than LLL reduction-aided DLD for small
constellation sizes. For large constellations sizes, the LLL
reduction makes DLD significantly faster, which is the case of
more interest in high data rate MIMO communication. It can
be seen that the complexity of LLL reduction-aided decoding
increases much slower than O(n%.) as predicted by theory, for
practical numbers of transmit antennas. Another advantage of
LLL reduction-aided decoding is that the complexity is less
dependent on SNR.

V. CONCLUSION AND DISCUSSION

We have presented improved fast decoding algorithms for
multiantenna differential modulation. We showed the two basis
reduction-aided approximate DLD algorithms, i.e., LLL-ZF and
LLL-SIC, exhibit different performance and gave a quantita-
tive analysis. In particular, the latter is much better in high di-
mensions. Sphere decoding was applied to find the closest point

3The V-BLAST ordering is implemented, as in [19].
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in the Euclidean space exactly. Furthermore, we proposed aug-
mented DLD to compensate for the remaining cosine approxi-
mation, which practically achieves the MLD performance. The
performance gain of exact and augmented DLD is clear for large
values of nyp and high SNR. Moreover, our definition of an
np-D lattice for the MIMO differential scheme is simple, yet
effective in performance improvement and complexity reduc-
tion.

Various methods of preprocessing and ordering were exam-
ined, and we found that LLL reduction is most effective in re-
ducing the overall complexity for large constellation sizes. The
four LLL reduction-aided DLD algorithms have complexity on
the same order, and are all much faster than brute-force MLD for
large constellation sizes. The small amount of extra complexity
of DLD is rewarding in terms of the obtained performance gain.
Ordinarily, basis reduction is seen as the preprocessing stage,
with minor complexity, for sphere decoding. Here, a different
viewpoint is more suitable for multiantenna DLD: sphere de-
coding as a postprocessing stage of basis reduction. In contrast
to coherent MIMO decoding in a quasi-static fading channel [2],
[3], the LLL algorithm is often the decoding-speed bottleneck
of multiantenna DLD. The application of some fast LLL-type
reduction algorithms may warrant a serious investigation.

The empirical evidence of the identical outcomes of MLD and
augmented DLD indicates that there may exist a lower bound
on the value of « for the initial radius R = ad,, above which
augmented DLD is strictly optimum. Such a lower bound would
depend on the geometric relation of VM and V!, and the
covering radius of the lattice.

While we only dealt with diagonal constellations in this
paper, DLD allows for a straightforward extension to many
nondiagonal constellations. This is because most nondiagonal
group codes contain large diagonal subgroups. We may apply
DLD within each subgroup and use an exhaustive method
across subgroups (cf. [13], [14]). Finally, sphere decoding has
recently been applied to single-antenna multiple-symbol DD
(MSDD) [22]; a similar extension of DLD to MSDD for DSTM
would be of great interest.

APPENDIX
UPPER BOUNDS ON PERFORMANCE L0OsSS OF LLL-ZF/SIC

In this appendix, we show the power-efficiency loss of LLL-
ZF/SIC is upper-bounded by a constant that is a function of
the dimension n of a lattice only. To do this, we derive lower
bounds on the MSEDs of the decoders for a given lattice, which
dominates the performance at high SNR.

Confer the decision regions in Fig. 1. The MSED of MLD
is obviously d%;; = A?/4, where \ denotes the length of the
shortest nonzero vector in the lattice with basis B. Let ©; be
the angle between b; and the linear space spanned by the other
n—1 basis vectors, and B = [bl, ..., by] be the Gram-Schmidt
matrix of B. The MSEDs of LLL-ZF and LLL-SIC are, respec-
tively, given by

1
d%F =1 1I<nln |b| sin? ©;

1
d21c =7 .2 mln |b 2. (8)
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Babai proved sin ©; > (1/2/3)" for an LLL-reduced lattice
[17, eq. (5.1)], which in this context means

2\" 1 . ) 2\" A2 2\" ,
Z . J2 > (2 = Z .
Iz > (9) 4 1§i§n|bL| - (9) 4 <9) A,

— min
&)

Moreover, the LLL-reduced lattice satisfies |b;[2 > 2~ (=1
|bi1|? [6, eq. (1.7)]. Hence, we have

)\2
D.2 _9
4

—(n— ]‘ —(n— —(n—
dge 22770 by 2 > 270 "Dy (10)

The above analysis implies that the losses in power efficiency
are upper-bounded by 4.5™ and 2("~1 | respectively, in a linear
Gaussian channel. Even if (5) does not exactly conform to the
linear Gaussian model, we suspect its performance can be char-
acterized in a similar way. This analysis for a fixed but arbi-
trary basis B is obviously extendible to an ensemble of random
fading coefficients. Therefore, we conclude the performance
losses are less than 6.5n dB for LLL-ZF and 3n dB for LLL-
SIC, respectively.

It is worth mentioning that the analysis is generally appli-
cable to lattice decoding problems in linear Gaussian channels.
For example, it explains why lattice-reduction-aided decoding
achieves full diversity of a spatial multiplexing system, as often
observed in computer simulation [2], [21].
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