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Abstract: The real/reactive power and current magnitude measurements can be accounted for in
an AC network state estimator using linear measurement functions. The nonlinearity in the conven-
tional AC state estimator equations is transferred from the measurement functions into a system of
nonlinear equality constraints which is independent of the measurement set. The new format of
equations entails two advantages. First, it can be easily integrated in optimisation routines which
employ first- and second-order derivative functions. Second, the linear measurement functions
can benefit from scaling techniques which are well documented in the linear programming litera-
ture. This research details the implementation of a least absolute value state estimator employing
the new format of equations. The optimisation method is based on a primal-dual interior-point
method that can accurately account for zero injection measurements and power directions.
Numerical testing is used to validate the approach for networks with measurement sets that are
(i) conventional and (ii) have a high proportion of current magnitude measurements and power
signs.
List of symbols

bsh/2 1/2 charging susceptance in the p equivalent
model

bin series susceptance in the p equivalent model

Bin imaginary part of Ŷ in

gin series conductance in the p equivalent model

Gin real part of Ŷ in

hk
T row vector of the kth linear measurement

function

Iin magnitude of the line (i–n) current leaving
bus i

m number of measurements in the network

N number of buses in the network

Pi real power injection at bus i

Pin real power line (i–n) flow leaving bus i

Qi reactive power injection at bus i

Qin reactive power line (i–n) flow leaving bus i

rk, sk positively bounded variables in the least
absolute value representation

RMS-VE root mean square voltage error

RMS-AE root mean square angle error

REL-VE maximum relative voltage error

REL-AE maximum relative angle error
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Rin variable in the proposed power flow format
defined as ViVn cos(di2 dn)

Tin variable in the proposed power flow format
defined as ViVn sin(di2 dn)

ui variable in the proposed power flow format
defined as V 2

i =
ffiffiffi
2

p

Vi voltage magnitude at bus i

x state vector

xi
e estimated value of xi

xi
tr true value of xi

Ŷin complex representation of an element in the
bus admittance matrix

zk kth measurement

zk
min, zk

max minimum and maximum values of the kth
measurement

di voltage angle at bus i

1 Introduction

Governments of many industrialised nations have pledged
to reduce their carbon emissions in accordance with the
Kyoto agreement on climate change [1]. For instance, UK
government has set a carbon cut target of 60% by 2050
[2]. Reducing carbon emissions requires governments and
power utilities to invest in renewable energy sources such
as tidal, solar and wind power. These sources are by
nature geographically dispersed and comparatively small
sized which in turn necessitates their connection to distri-
bution networks. Consequently, there is an emerging need
for integrated monitoring and control of both transmission
and distribution networks.
State estimation is the main function for monitoring

power networks. Since the 1970s, it has been researched
in the context of transmission networks [3, 4]. In trans-
mission state estimation, conventional measurement sets
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are composed of real/reactive power pairs and voltage mag-
nitudes. Current magnitude measurements are occasionally
employed for increasing the level of redundancy.
Distribution networks, on the other hand, have limited con-
ventional measurements. In many cases, the measurement
sets for such networks are dominated by current magnitude
measurements. These measurements are known to compli-
cate the state estimation problem because they do not
contain directional information. The lack of power flow
directions implies that although a network may be numeri-
cally observable in the conventional sense (measurement
Jacobian is of full column rank), its state estimation solution
may not be unique [5]. The literature reports examples of
networks having a large proportion of current magnitude
measurements but that can be still made uniquely observa-
ble through incorporating into the constraint set power
injection signs and zero injection pseudo-measurements
[6]. Therefore for AC network state estimation employing
current magnitude measurements, the computational
engine should be capable of handling functional equality/
inequality constraints.
The underlying computational procedure in any state esti-

mator is an optimisation function. In the state estimation lit-
erature, the employed optimisation functions can be
classified as either first- or second-order methods, depend-
ing on the order of the derivative. The first-order methods
include the classical weighted least squares [7], the itera-
tively re-weighted least squares [8–11] and the linear pro-
gramming based least absolute value estimator [12]. The
second-order methods require the evaluation of the
Lagrangian Hessian matrix. The most recent second-order
state estimation implementations rely on primal-dual
interior-point methods. They have been implemented in
the context of a least absolute value estimator [13] and a
Huber M-estimator [14]. Moreover, the interior-point
implementations have been shown to be successful in enfor-
cing zero injection measurements and load power limits
[14]. Reference [15] reports a least absolute value interior-
point implementation which also accounts for current mag-
nitude measurements. In practice, the upgrade of an
interior-point based state estimation function to account
for current magnitude measurements on top of the conven-
tional measurement set requires significant time and effort
for coding and subsequently testing the computation of
the Jacobian and Lagrangian Hessian matrices.
This paper proposes a primal–dual interior-point

implementation of a least absolute value AC network state
estimator that uses linear measurement functions. These
functions have a constant Jacobian matrix and therefore
do not contribute to the Lagrangian Hessian. In the proposed
format, the nonlinearity of the state-estimation function is
embodied in a fixed set of equality constraints. This set of
nonlinear constraints is the only one which contributes to
the Langrangian Hessian computation. The paper shows
that the new format of equations can be obtained using
simple variable substitutions. A similar format of equations
was first proposed for radial networks in [16] and then
shown to be equivalent to a second-order cone program
in [17].

2 Power flow equations

Let Ŷin ¼ Gin þ jBin denote the complex rectangular rep-
resentation of an element in a N � N bus admittance
matrix. If bus voltages are expressed in polar form
( ~Vi ¼ Vi/di), the real and reactive injected powers at an
2
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arbitrary bus i [18] are

Pi ¼V
2
i Gii þ

XN
n¼1
n=i

h
ViVnGin cos (di � dn)

þ ViVnBin sin (di � dn)
i

(1)

Qi ¼� V
2
i Bii þ

XN
n¼1
n=i

h
ViVnBin cos (di � dn)

� ViVnGin sin (di � dn)
i

(2)

By following [17], define Rin ¼ ViVn cos (di � dn),
Tin ¼ ViVn sin (di � dn) and ui ¼ V 2

i =
ffiffiffi
2

p
. The nonlinear

power flow equations become

Pi ¼
ffiffiffi
2

p
Giiui þ

XN
n¼1
n=i

[GinRin þ BinT in] (3)

Qi ¼ �
ffiffiffi
2

p
Biiui �

XN
n¼1
n=i

[BinRin � GinTin] (4)

From the above definitions of Rin, Tin and ui, it follows that

2uiun ¼ R2
in þ T2

in (5)

di � dn ¼ tan�1 Tin

Rin

� �
(6)

3 State estimator

Let x denote the state vector

x ¼ [ . . . , ui, . . . , Rij, . . . , Tij, . . . , di, . . . ]
T (7)

where it is understood that ui � 0 and Rij � 0.
The least absolute value state estimation problem can be

expressed as

minimise
Xm
k¼1

hTk x� zk
�� ��subject to (8)

equality constraints: hTk x ¼ zk , (9)

inequality constraints: zmin
k � hTk x � zmax

k , (10)

feasibility constraints: equations (5) and (6).
In the above problem, hTk is the kth row of the linear

measurement function matrix, zk represents the kth measure-
ment (k ¼ 1, . . . , m), (9) models the zero-injection pseudo-
measurements and (10) constrains the direction of the power
injection or flow. The inequality constraints (10) are com-
monly used in conjunction with the current magnitude
measurements. The measurement functions take one of
the following forms, depending on the measurement type.

1. Real power injection measurement Pi

hTk x ¼
ffiffiffi
2

p
Giiui þ

XN
n¼1
n=i

[GinRin þ BinT in] (11)
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2. Reactive power injection measurement Qi

h
T
k x ¼ �

ffiffiffi
2

p
Biiui �

XN
n¼1
n=i

[BinRin � GinTin] (12)

3. Real power flow measurement Pin

h
T
k x ¼

ffiffiffi
2

p
ginui � ginRin � binT in (13)

where gin, bin: series conductance and susceptance in the p
equivalent model.

4. Reactive power flow measurement Qin

hTk x ¼ �
ffiffiffi
2

p
bin þ

bsh
2

� �
ui þ binRin � ginT in (14)

where bsh=2: 1/2 charging susceptance in the p equivalent
model.

5. Current magnitude measurement Iin transformed into I2in
[6]

h
T
k x ¼

ffiffiffi
2

p
Aui þ

ffiffiffi
2

p
Bun � 2CRin þ 2DTin (15)

where

A ¼ g2in þ bin þ
bsh
2

� �2

,

B ¼ g2in þ b2in,

C ¼ g
2
in þ bin bin þ

bsh
2

� �
,

D ¼
ginbsh
2

6. Voltage magnitude measurement Vi transformed into
V 2

i =
ffiffiffi
2

p

hTi x ¼ ui (16)

The above linear measurement functions can account for
additional state variables from load-flow control devices
such as tap-changing or phase-shifting transformers pro-
vided that these devices are represented using the power
injection model [19].

4 Interior-point solver

It is well known that there are two mathematically equivalent
nonlinear programming representations of the direct least
absolute value state estimation problem (5), (6), (8)–(10).
Both representations have their objective and constraint
functions twice continuously differentiable and are therefore
computationally tractable using interior-point methods [13].
The first representation replaces (8) by a linear objective
function and functional inequality constraints [13]

minimise
Xm
k¼1

sk subject to (17)

� sk � h
T
k x� zk � sk ; k ¼ 1, . . . , m (18)

The second representation substitutes (8) with a linear
objective function, functional equality constraints and
IET Gener. Transm. Distrib., Vol. 2, No. 1, January 2008
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positively bounded variables [13]

minimise
Xm
k¼1

(rk þ sk) subject to (19)

h
T
k x� zk þ rk � sk ¼ 0, (20)

rk � 0, sk � 0; k ¼ 1, . . . , m (21)

Numerical experiments reported in [13] have shown that
for least absolute value state estimation, the second formu-
lation results in a more numerically robust interior-point
implementation.
In this study, the direct state estimation problem is rep-

resented using (19–21) and solved via the primal–dual
interior-point method described in [13]. The interior-point
solver requires, at each iteration, the computation of the
Jacobian and Lagrangian Hessian matrices. The Jacobian
matrix corresponding to the measurements (19) together
with the equality (9) and inequality constraints (10) is con-
stant throughout all iterations. For the feasibility constraints
(5), (6), the formulae for computing the Jacobian and
Hessian elements are given in the appendix. The initial
starting vector is chosen as follows

rk ¼ sk ¼ 1 for all measurements
ui ¼ 1=

ffiffiffi
2

p
and di ¼ 0 for all nodes

Rij ¼ 1 and Tij ¼ 0 for all lines

The solver terminates when all the stopping criteria are
satisfied with a tolerance of 1028.

4.1 Scaling

In linear programming, scaling with positive factors is a
general conditioning transformation that can be applied to
the matrix of constraints without significantly changing
the problem definition. The most widely used method is
scaling rows and columns to have unit norms [20]. The
use of scaling in linear programming based least absolute
value state estimation was first investigated in [21].
According to the numerical results in [21], normalisation
is the most effective provided that (i) column scaling is per-
formed before row scaling and (ii) the unitary columns cor-
responding to the positively bounded variables (rk and sk in
(20)) are preserved. Advantages of scaling include a
reduction in the number of linear programming iterations
and a decrease in the number of leverage points [21].
The numerical experiments conducted in this study have

shown that scaling the measurement matrix such that its
rows have unit length results in improved convergence
and a reduced number of interior-point iterations. In fact,
some problems failed to converge without scaling. As in
[21], the normalisation did not include the unitary
columns corresponding to the variables rk and sk in (20).
In any case, column scaling was not implemented because
the variables in the linear measurement equations also
appear in the nonlinear feasibility constraints.

5 Numerical results

A prototype implementation of the proposed estimator was
programmed in MATLAB running on a Pentium IV,
1.89 GHz PC with 256 Mbytes of RAM. Testing was
carried out on the IEEE 14, 30 and 118 bus systems. The
line and load data for these systems are available from
[22]. For each system, the true values of the measurements
were generated using a Newton–Raphson load flow algor-
ithm. The noise was added to the true values assuming
3
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Table 1: Measurement sets adapted from [23]

Measurements and constraints IEEE 14 IEEE 30

real injection 2, 4, 5, 6, 10, 11, 12, 13, 14 1, 2, 3, 5, 8, 10, 14, 15, 17, 20, 21,

23, 24, 26

reactive injection 2, 4, 5, 6, 8, 10, 11, 12, 13, 14 1, 2, 3, 5, 8, 10, 13, 14, 15, 17, 20,

21, 23, 24, 26

real zero injection 7, 8 6, 9, 11, 13, 22, 25, 27, 28

reactive zero injection 7 6, 9, 22, 25, 27, 28

real/reactive power flow 1–2, 2–3, 4–7, 5–6, 6–11, 6–13,

7–8, 7–9, 9–14

1–2, 1–3, 2–5, 2–6, 6–10, 9–11,

4–12, 16–17, 18–19, 19–20,

24–25, 27–30, 29–30, 6–28,

13–12, 26–25.

voltage magnitude 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 2, 3, 5, 6, 8, 9, 10, 13, 14, 15, 17,

20, 21, 23, 24, 26, 27, 28
Gaussian distribution with zero mean and a standard devi-
ation of 0.01 pu for power/current measurements and
0.005 pu for voltage measurements. The state estimator
was tested under two measurement scenarios: first for con-
ventional measurement sets and second for measurement
sets with current magnitudes and power signs.

5.1 Conventional measurement sets

The conventional measurement sets for the IEEE 14 and 30
bus systems were adapted from [23]. The observability
algorithm in [23] relies on the DC network model. The cor-
responding measurement sets for the AC network model are
given in Table 1. For the IEEE 118 bus test system, a simple
measurement set was used. It consisted of (i) the voltage
magnitude at the slack node and (ii) the real and reactive
power flows at one end of each line, that is estimation
was carried out using a line-only state estimator.
Table 2 shows the following performance metrics for

each of the above systems simulated in the presence of
measurement noise

RMS voltage error (pu): RMS-VE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (V

tr
i � V e

i )
2

N

s

RMS angle error (rad): RMS-AE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (d

tr
i � dei )

2

N

s

Maximum relative voltage error (%):

REL-VE ¼ max
i¼1, ..., N

V tr
i � V e

i

V tr
i

����
����� 100

Table 2: State estimator performance – conventional
measurement set with noise

Network RMS-VE RMS-AE REL-

VE

REL-

AE

TIME

(s)

ITER.

IEEE14 2.77 � 1023 2.67 � 1023 0.43 0.85 0.21 9

IEEE30 4.25 � 1023 4.39 � 1023 0.88 1.39 0.26 10

IEEE118 2.62 � 1023 1.91 � 1023 0.61 0.72 0.62 12
Authorized licensed use limited to: Imperial College London. Downloaded on January 22, 2
Maximum relative angle error (%):

REL-AE ¼ max
i¼1,..., N

dtri � dei

dtri

����
����� 100

CPU time (s): TIME
Number of interior-point iterations: ITER.

In the above equations, the superscript tr designates the
true value and e represents the estimated value. Note that
in order to avoid division by zero in the REL-AE equation,
the angle at the slack node was set to 1 rad. The value of 1
rad was chosen because it allows meaningful comparison
between REL-VE and REL-AE in Table 2. In the absence
of measurement noise, the state estimator converged to
the true solution. In fact, all values of REL-VE and
REL-AE in Table 2 were at 0.00%.
Table 3 shows similar results for the test systems in the

presence of bad data. It is important to note that the error
values in Tables 2 and 3 are in agreement with the range
of errors from a previous study reporting the

Table 3: State estimator performance – conventional
measurement set with noise and bad data

Network RMS-VE RMS-AE REL-

VE

REL-

AE

TIME

(s)

ITER.

IEEE14 4.93 � 1023 3.74 � 1023 1.39 1.17 0.25 11

IEEE30 5.07 � 1023 9.00 � 1023 1.43 3.50 0.26 9

IEEE118 5.95 � 1023 3.25 � 1023 1.04 1.21 0.59 12

Table 4: True, measured and estimated values

Network Quantity True value Measured value Estimated

value

IEEE14 P5–6 0.438998 0.938998 0.462994

Q5–6 20.123030 20.623030 20.114999

IEEE30 P1 2.609207 3.109207 2.608240

Q1 20.203061 0.296939 20.284769

IEEE118 P26–25 0.901500 1.401500 0.926213

Q26–25 20.915405 20.415405 20.864993
IET Gener. Transm. Distrib., Vol. 2, No. 1, January 2008
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Table 5: Measurement sets adapted from [24] and [14]

Measurements and constraints IEEE14 IEEE30

real injection 1, 2, 3, 4, 6, 9, 10, 12, 13 1, 2, 3, 5, 14, 16, 17, 26, 29, 30

reactive injection 1, 2, 3, 4, 6, 9, 10, 12, 13 1, 2, 3, 5, 11, 14, 16, 17, 26, 29, 30

real zero injection 7, 8 6, 9, 11, 13, 22, 25, 27, 28

reactive zero injection 7 6, 9, 22, 25, 27, 28

real/reactive power flow 1–2, 4–7, 4–9, 7–8, 7–9 1–2, 1–3, 2–4, 2–5, 2–6, 4–6,

6–7, 6–8, 6–9, 6–10, 4–12,

12–14, 12–15, 12–16, 19–20,

10–21, 10–22, 15–23, 24–25,

27–29, 27–30, 6–28, 2–1, 4–3,

6–2, 19–18, 24–22, 24–23,

27–28, 28–8, 28–6

voltage magnitude 1 1

current magnitude 6–11, 10–11 12–13, 10–20

real power injection sign 10 18, 20

reactive power injection sign 10 13, 18, 20
implementation of a least squares, a linear programming
based least absolute value, and an iteratively re-weighted
least squares estimator [11]. All the estimators in [11] use
the standard power flow equations format. The bad data
measurements together with their true and estimated
values are given in Table 4. These results suggest that the
proposed state estimator, like the conventional least absol-
ute value estimator, is capable of rejecting bad data as
long as they do not correspond to leverage point
measurements.
As for the computational performance, comparisons with

previous studies indicate that the execution time of the pro-
posed estimator is less than the corresponding average
execution times of the linear programming based least
absolute value and the iteratively re-weighted least
squares estimators (c.f. Tables 2 and 3 in [11]). Moreover,
the execution time is comparable with that of the interior-
point least absolute value state estimator employing the
conventional nonlinear measurement functions (c.f.
Tables 4 and 5 in [13]). Both the estimator in this paper
and the one in [13] employ the same interior-point
implementation.

5.2 Unconventional measurement sets

Unconventional measurement sets include current magni-
tudes and power signs. These can be useful for extending
system observability [6]. For instance, [24] includes
examples of measurement sets for the IEEE 14 and 30
bus test systems which do not provide complete network
observability. To recover the overall system observability,
[24] provides candidate locations for real/reactive power
pseudo-measurements. The use of power pseudo-
measurement intervals in the measurement sets of [24]
was investigated earlier in [14]. In this research, the

Table 6: State estimator performance –
unconventional measurement set without noise

Network RMS-VE RMS-AE REL-

VE

REL-

AE

TIME

(s)

ITER.

IEEE14 8.31 � 1027 1.53 � 1026 0.00 0.00 0.34 25

IEEE30 7.15 � 1025 7.30 � 1025 0.02 0.03 0.28 10
nsm. Distrib., Vol. 2, No. 1, January 2008
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branches used in [14] for power pseudo-measurement place-
ment were provided with current magnitude measurements
and the power injection pseudo-measurements were
replaced with inequality constraints indicating their signs.
The corresponding measurement sets for the IEEE 14 and
30 bus test systems are given in Table 5. Table 6 shows
the estimation results in the absence of noise. Table 7
shows similar results in the presence of measurement
noise. It can be inferred from the results that the current
magnitude measurements and power signs are useful for
state estimation in this case.
When the current magnitude measurements constitute a

very large proportion of the measurement set, state esti-
mation is possible only if network observability can be
guaranteed by other means. In certain examples, observabil-
ity can be achieved by the use of zero injection pseudo-
measurements and power signs [6]. The measurement
configurations in [6] were also used in testing the state esti-
mator. For the IEEE 14 bus system, the measurement set
consisted of (i) voltage magnitudes at all nodes, (ii) line
current magnitudes at both ends of every line and (iii)
zero injection real/reactive pseudo-measurements. In
addition, inequality constraints were used to enforce (i)
the real power injection signs at all nodes except at node
2 were both load and generation are present and (ii) the
reactive power injection signs for load nodes. For the
IEEE 30 bus system, the measurement set similarly
consisted of all voltage and line current magnitude
measurements together with the zero injection pseudo-
measurements. Again, real power injection signs were
specified for all nodes and reactive power signs were
defined for all load nodes. The estimation statistics in the
presence of noise are shown in Table 8. It is evident that
the current magnitude measurements lead to an increased
number of interior-point iterations. This behaviour has

Table 7: State estimator performance –
unconventional measurement set with noise

Network RMS-VE RMS-AE REL-

VE

REL-

AE

TIME

(s)

ITER.

IEEE14 5.89 � 1023 2.03 � 1023 0.97 0.43 0.36 27

IEEE30 3.46 � 1023 1.50 � 1023 0.71 0.56 0.29 12
5
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been previously reported in [15]. In AC networks with such
type of measurement sets, the estimated state may be used
for load estimation by computing the power delivered into
each load node [25].

6 Conclusion

This paper presented a least absolute value state estimator
based on a new power flow equations format. In this
format, the real/reactive power and current magnitude
measurements are modelled via linear functions. The nonli-
nearity is accounted for by a fixed set of nonlinear feasi-
bility constraints. The proposed format can be easily
integrated in optimisation functions that require
second-order derivatives, for instance, a primal-dual
interior-point solver. Numerical results show that with con-
ventional measurement sets, the magnitude of error in the
estimates is comparable to that from three standard state
estimators which are based on the least squares, the linear
programming least absolute value, and the iteratively
re-weighted least squares techniques [11]. Even with uncon-
ventional measurement sets dominated by current magni-
tude measurements and power signs, the new estimator
was shown to be capable of maintaining an acceptable
level of error accuracy.
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8 Appendix

To compute the Jacobian and Lagrangian Hessian matrices
corresponding to (5), it is first rewritten as

f ¼ R2
in þ T2

in � 2uiun

The Jacobian and Hessian elements are

@f

@Rin

¼ 2Rin,
@f

@Tin

¼ 2Tin,
@f

@ui
¼ �2un,

@f

@un
¼ �2ui,

@2f

@R2
in

¼
@2f

@T2
in

¼ 2,
@2f

@un@ui
¼

@2f

@ui@un
¼ �2

Similarly, (6) is rewritten as

g ¼ di � dn � tan�1 Tin

Rin

The corresponding Jacobian and Hessian elements are

@g

@di
¼ 1,

@g

@dn
¼ �1,

@g

@Rin

¼
Tin

R2
in þ T 2

in

,
@g

@Tin

¼
�Rin

R2
in þ T2

in

,
@2 g

@R2
in

¼
�2RinT in

(R2
in þ T2

in)
2
,
@2 g

@T 2
in

¼
2RinT in

(R2
in þ T 2

in)
2
,

@2 g

@Rin@Tin

¼
@2 g

@Tin@Rin

¼
R
2
in � T

2
in

(R2
in þ T 2

in)
2
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