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Abstract: In this study, a statistical framework is introduced to assess the suitability of various state estimation
(SE) methodologies for the purpose of distribution system state estimation (DSSE). The existing algorithms
adopted in the transmission system SE are reconfigured for the distribution system. The performance of three
SE algorithms has been examined and discussed in standard 12-bus and 95-bus UK-GDS network models.

Nomenclature
m, n number of measurements and state variables

xt, x̂ true state and estimated state vectors, respectively
(n � 1)

Px, P̂x numerically computed and estimated error
covariance matrices, respectively (n � n)

E[.] expectation operator

e normalised state error squared variable

z measurement vector (m � 1)

h(x) expectation of measurement vector (m � 1)

szi standard deviation of the ith measurement

Rz measurement error covariance matrix (m � m)

ez measurement error vector (m � 1)

ri normalised residual of ith measurement

1 Introduction
Deregulation of power system and the introduction of
distributed generation (DG) to distribution networks has
challenged the operational philosophy of the distribution
systems. The passive nature of the network can only
accommodate restricted amount of DG capacity. This means
that significant network reinforcement will be necessary to
accommodate DG and load growth in the future. An
alternative would be to change the approach to network
operation such as introducing control to distribution network

operation. A range of technology innovations is needed to
change the way distribution systems operate. The innovations
must pin down on new architecture for distribution network
control centre with performance critical software functions
like state estimation (SE), optimal power flow (OPF) and
network-specific sensor placement and integration.

In transmission systems, SE is a fairly routine task and a host
of established methodologies exist [1]. These cannot simply be
transferred to distribution systems because the planning, design
and operation philosophy of distribution networks are different
from those in the transmission networks. The distribution
network topology and characteristics are different and most
importantly the amount of available network measurements is
very limited. The SE methodologies adopted in transmission
systems start showing their limitations when exposed to the
specifics of distribution networks [2].

Furthermore, the potential benefits of using SE technologies
in distribution network control have not been explored mainly
because of the absence of adequate network measurements
and also the lack of rigorous methodology and tools that
could be applied on restricted measurements. The
development of new distribution system state estimation
(DSSE) is a challenging task as the tools to evaluate the
quality of SE must consider a number of issues relating to
measurement types, locations and numbers.

Methodologies on which such tools could be built are not
available at present. However, some interesting research has
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been done in DSSE [3–10]. Lu et al. [3] propose a three-
phase DSSE algorithm. The algorithm uses a current-
based formulation of the weighted least-squares (WLS)
method in which the power measurements, current
measurements and voltage measurements are converted to
their equivalent currents, and the Jacobian terms are
constant and equal to the admittance matrix elements. The
observability analysis of the proposed distribution system is
also discussed. Lin and Teng [4] have proposed a new fast
decoupled state estimator with equality constraints. The
proposed method is based on the equivalent current
measurement in rectangular coordinates. Baran and Kelley
[5] have introduced a computationally efficient algorithm
based on branch currents as state variables. The method is
demonstrated to work well in radial and weakly meshed
systems. This concept is further refined by Wang and
Schulz [6] and they have presented a revised branch
current-based DSSE algorithm. In this algorithm, the load
estimated at every node from an automated metre reading
system is used as a pseudo measurement. Li [7] has
presented a distribution system state estimator based on
WLS approach and three-phase modelling techniques. Li
has also demonstrated the impact of the measurement
placement and measurement accuracy on the estimated
results. A rule-based approach for measurement placement
is presented by Baran et al. [8]. Ghosh et al. [9] have
presented an alternative approach to DSSE using a
probabilistic extension of the radial load flow algorithm
treating the real measurements as solution constraints. The
algorithm that accounts for non-normally distributed loads,
incorporates the concept of load diversity and can interact
with a load allocation routine. The field results are
discussed in [10].

The DSSE literature is either based on the probabilistic
load flow or direct adaptation of transmission system SE
algorithms (particularly WLS). The issue of measurement
inadequacy is addressed through pseudo measurements that
are stochastic in nature. However, the performance of the
SE algorithms under the stochastic behaviour of pseudo
measurements is not addressed in the DSSE literature.

The work presented in this paper investigates the existing
transmission system SE techniques and algorithms and
assesses their suitability to the DSSE problem. The selected
algorithms are tested on the 12-bus and 95-bus UK-GDS
network models against some statistical measures like bias,
consistency and overall quality of the estimates. Unlike many
other distribution systems, the UK distribution network is
fairly balanced and that has prompted us to go with a single-
phase approach, although the method is generic.
Furthermore, the statistical measures utilised in this paper
mainly depend on the probability distribution of the
measurements and not on the line model of the network.
Following this introduction, a theoretical framework for
the statistical measures is established in Section 2. The
consistency and the quality of the estimates utilise the
asymptotic state error covariance matrix. The various SE

techniques along with the details of their state error
covariance matrices are discussed in Section 3. The efficacy
of the algorithms is examined on standard test systems and
discussed in Section 4.

2 Statistical measures
In distribution systems, measurements are predominantly
of pseudo type, which are statistical in nature, so the
performance of a state estimator should be based on some
statistical measures. Various statistical measures such as
bias, consistency and quality have been adopted for
assessing the effectiveness of SE in other technology areas
such as target tracking [11]. We explore these for the
DSSE applications. Briefly we describe the statistical
measures as follows.

2.1 Bias

A state estimator is said to be unbiased if the expected value
of error in the state estimate is zero. Mathematically an
unbiased estimator can be defined as

E[(xt � x̂)] ¼ 0 (1)

2.2 Consistency

If the error in an estimate statistically corresponds to the
corresponding covariance matrix then the estimate (and
hence the technique generating this estimate) is said to be
consistent. One measure of consistency is the normalised
state error squared variable

e ¼ (xt � x̂)TP̂
�1

x (xt � x̂) (2)

where, P̂x, denotes the estimated state error covariance matrix.

For the estimator to be consistent e should be within its
confidence bounds, which can be obtained from the error
statistics.

2.2.1 Choice of confidence regions: In the univariate
case when the estimation error is represented by a normal
distribution with zero mean and known variance, one can
use the tables of normal distribution to compute the
confidence intervals. However, in the multivariate case when
the estimation error is represented by a normal distribution
with zero mean vector and known covariance matrix, such
confidence intervals are difficult to compute because tables
are available only for the bivariate case. Alternatively, one
could setup limits for each component on the basis of
distribution, but this procedure has the disadvantages that
the choice of limit is somewhat arbitrary and in some cases
leads to tests that may be poor against some alternatives.
Moreover, such limits are difficult to compute. The
procedure given below, which is based on x2-statistics, can
be easily computed and applied in the multivariate case.
Furthermore, it can be theoretically justified based on the
following lemma. The proof the lemma can be found in [12].
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Lemma 1: If an n-component vector v is distributed
according to N (0, T ) (non-singular), then vTT�1v is
distributed according to x2-distribution with n degrees of
freedom.

2.2.2 x2-statistics: It can be shown that if the errors
in measurements are normally distributed, the SE error
corresponding to these measurements will be normally
distributed with zero mean vector and covariance matrix
given by E[(xt � x̂)(xt � x̂)T]. By utilising this fact and
Lemma 1, the normalised squared error e (2) should follow
a x2-distribution with n degrees of freedom for a consistent
estimator, where n is the number of states. In other words
for the estimator to be consistent, e should lie within its
confidence bounds that can be obtained from the standard
x2-table for a chosen confidence level a. Lower and upper
bounds for this confidence level can be given by
x2

n((1� a)=2) and x2
n((1þ a)=2), respectively. In statistics,

a 95% confidence interval is considered to be adequate.

2.2.3 x2-test over Monte Carlo simulations: In
practice, statistical tests are performed using a number of
Monte Carlo simulations. Consider the system has n
number of states and M is the number of Monte Carlo
simulations, then the normalised squared error follows a
x2-distribution with Mn degrees of freedom. Mathematically

E[e] ¼
x2

Mn(a)

M
(3)

For large number of Monte Carlo runs x2
Mn(a) ’Mn, which

results in

E[e] ¼ n (4)

Hence the mean of e should approach to the number of states
with the increase in the number of simulations.

2.3 Quality

Quality of an estimate is inversely related to its variance. For
the multivariate case, the square root of the determinant of
the error covariance matrix measures the volume of 1 2 s

ellipsoid and is used here to quantify the total variance of
an estimate. Hence, the quality of the estimate can be
defined as

Qdet ¼ log
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det (Px)
p

 !
(5)

Sometimes, in large networks, it becomes difficult to
compute the determinant of the error covariance matrix
numerically because of precision limits of the solver. In this
situation, an alternate way to define the quality is to use the
trace of the error covariance matrix. However, this ignores
the off-diagonal information. The quality as function of the

trace of the error covariance matrix can be written as

Qtrace ¼ log
1

tr(Px)

� �
(6)

‘

3 State estimation techniques
Various algorithms have been suggested for transmission system
SE [1]. All these algorithms work well in transmission systems
because there is high redundancy in the measurements.
However, in distribution systems, because of sparsity of
measurements, there is less or no redundancy in the
measurements. Hence, when these algorithms are exposed to
distribution systems they start showing their limitations. For
example, in transmission systems, weighted least absolute
value estimator (WLAV) eliminates bad data out of redundant
measurements, but in distribution systems it fails to work
because it treats every pseudo measurement as bad data and
there is no redundancy to eliminate these pseudo measurements.

This section briefly explains the most common SE
techniques to examine their suitability for the DSSE problem
under stochastic behaviour of the pseudo measurements and
limited or no redundancy. All these techniques use the
following measurement model.

3.1 Measurement model

z ¼ h(x)þ ez (7)

where, ez � N (0, Rz) is zero mean Gaussian noise with error
covariance matrix Rz(¼ diag{s2

z1, s2
z2, . . . , s2

zm}). We define
the normalised residual of ith measurement ri as

ri ¼
zi � hi(x)

szi

(8)

where, ri � N (0, 1). The class of estimators discussed in this
section are based on maximum likelihood theory. They
rely on a priori knowledge of the distribution of the
measurement error (Gaussian in this case, with zero mean
and known covariance). A generalised estimation problem
seeks to minimise the following objective

J ¼
Xm

i¼1

r(ri) (9)

The different estimators can be characterised based on the
choice of the r function.

3.2 Weighted least squares estimation

WLS is a quadratic form of the maximum likelihood
estimation problem. The WLS problem can be stated as
the minimisation of the following objective function

1

2
[z� h(x)]TR�1

z [z� h(x)] (10)
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The above objective takes the form given in (9) for

r(ri) ¼
1

2
r2

i (11)

An estimate of state was obtained iteratively using the
Newton method according to

x̂kþ1 ¼ x̂k þ (H T(x̂k)R�1
z H (x̂k))

�1H T(x̂k)R�1
z [z� h(x̂k)]

(12)

where

H (x̂k) ¼
@h(x)

@x

� 

x¼x̂k

(13)

3.3 Weighted least absolute value
estimator

WLAV estimator is based on the minimisation of the L1

norm of weighted measurement residual, and can be
expressed as

jjR�1=2
z [z� h(x)]jj1 (14)

which is equivalent to (9) when

r(ri) ¼ jrij (15)

Existing techniques use linear programming or interior point
methods to solve this problem. In this paper we have used a
primal dual interior point method [13].

3.4 Schweppe Huber generalised M
(SHGM) estimator

This estimator combines both WLS and WLAV estimators.
The r function for SHGM estimator is given by

r(ri) ¼

1

2
r2

i if jrij � avi

avijrij �
1

2
a2v2

i otherwise

8><
>: (16)

The performance of this estimator highly depends upon the
weight factor vi and tuning parameter a. In this paper, the
solution to this problem was obtained using iteratively re-
weighted least squares (IRLS) method [1]. The parameter
a ¼ 1.5 was used in simulations.

3.4.1 State error covariance matrix: An estimate of
the asymptotic covariance matrix at convergence can be
expressed as [14, 15]

P̂x ¼ a(H T(x̂)R�1
z H (x̂))�1 (17)

where x̂ ¼ limk x̂k. The value of a depends on the choice of

the estimator. An expression for a is given by [14]

a ¼
E[c2(r)]

(E[c0(r)])2
(18)

where c(r) ¼ @r(r)=@r and c0(r) ¼ @c(r)=@r.

The numerical computation of a for various estimators
is given in the Appendix. Table 1 summarises the
various estimators used in this paper. Table 1 indicates a
typical value of a for SHGM considering avi ¼ 1:5. Since
the IRLS method is used for SHGM, the value of
a changes during the estimation process depending upon
the weight vi.

4 Case study
The algorithms discussed in the previous section were applied
on a 12-bus radial distribution network model and on a part
of the UK generic distribution system model (95-bus UK-
GDS). Figs. 1 and 2 show the schematic of the test
systems. Network and load data for these networks can be
found in [16] and [17], respectively.

4.1 State variables

The bus voltage magnitudes and angles were considered as
state variables except at the reference bus (Bus #1) for
which the bus angle was assumed to be zero. Hence, the
number of states to be evaluated was 23 and 189 for the
12-bus test system and the UK-GDS, respectively.

4.2 Measurements

It was assumed that the errors associated with the
measurements are independent identically distributed
(i.i.d.). Three types of measurements were taken into
consideration. The telemetered measurements were utilised
as real measurements. Zero injections with a very low

Table 1 State estimators: summary

Solution for x̂ Asymptotic error covariance P̂x

WLS Newton (HT(x̂)R�1
z H(x̂))�1

WLAV PDIP p
2(HT(x̂)R�1

z H(x̂))�1

SHGM IRLS 1.037(HT(x̂)R�1
z H(x̂))�1 a

aa ¼ 1.5, vi ¼ 1

Figure 1 Twelve-bus test system
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variance (1028) were modelled as virtual measurements.
Loads were modelled as pseudo measurements. Various
scenarios considering the errors in real measurements as 1
and 3%, whereas 20 and 50% in pseudo measurements
were examined. The range of error in pseudo measurements
was chosen on the basis of errors in load estimates of
various classes of customers, like industrial, domestic and
commercial. The loads of the industrial customers can be
estimated more accurately than the domestic and
commercial, thus they have less error. On the other hand,
loads of domestic customers are difficult to estimate, hence
they have large error. The error in commercial load
estimates lies between the two. It was also taken into
consideration that with this choice of range, the maximum
demand limits at various buses are not violated and the
condition of linear approximation is valid. The mean value
for these measurements was obtained using distribution
system load flow. Table 2 summarises the measurements
and their redundancy level for the two test network models.

4.3 Measurement variance

A +3s deviation around the mean covers more than 99.7%
area of the Gaussian curve. Hence, for a given % of maximum
error about mean mzi , the standard deviation of error was
computed as follows

szi ¼
mzi �%error

3� 100
(19)

The square of standard deviation gives the variance of the
measurement.

4.4 Simulation results

The performance of the estimators was evaluated for the
following cases:

Case 1: Error in real measurement 1% and pseudo
measurement 20%

Figure 2 UK-GDS: 95-bus test system

Table 2 Measurements used in study

Test system Real measurements (mr) Virtual & pseudo
measurements (mp)

Redundency
(mrþmp)/n

twelve-bus 3(V1, P1�2, Q1�2) 22 (loads only no zero
injections)

25

23
¼ 1:09

UK-GDS (a) limited
redundancy

5(V1, P1�2, Q1�2, P1�85, Q1�85) 188 (loads and zero
injections)

193

189
¼ 1:02

UK-GDS (b)
increased
redundancy

21(V1, V18, V19, V20, V21, V95, P1�2, Q1�2,
P1�85, Q1�85, P18�19, Q18�19, P82�95, Q82�95

P15�17, Q15�17, P34�35, Q34�35, d19, d20, d21)

188 (loads and zero
injections)

209

189
¼ 1:11
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Case 2: Error in real measurement 1% and pseudo
measurement 50%

Case 3: Error in real measurement 3% and pseudo
measurement 20%

Case 4: Error in real measurement 3% and pseudo
measurement 50%

4.4.1 Twelve-bus system: In the 12-bus test system, the
voltage magnitude measurement at bus #1 and power flow
measurement in line #1–2 were considered as real
measurement. Fig. 3 shows the variation of the expected value
of the normalised state error squared with various Monte
Carlo steps for the 12-bus distribution system. It is clear from
the figure that as the number of Monte Carlo steps increases,
the expected value of normalised state error square variable
approaches the number of states, which agrees with (4). Also
after 400 Monte Carlo steps, the error in E[e] is within 1% of
the number of states. Hence, we chose 400 Monte Carlo steps
for the simulations. A larger number of Monte Carlo steps
gives slightly better results but it increases the computation time.

Fig. 4 shows the error plots with the number of simulations
for the three estimators. The plots shown are for the worst
case scenario (Case 4), that is, the error associated with real
measurements is 3% and that with pseudo measurements is
50%. The estimation errors for all the states are displayed
in Fig. 4, however, they are indistinguishable because of the
overlaps. It is evident from the figure that the error varies
about zero mean. This indicates that all the three
estimators are unbiased. It was also found that for all other
cases, the three estimators were unbiased.

Figs. 5–8 show the consistency plots for the estimators for
cases 1–4. A 95% confidence level was used to define the
confidence bounds. It was found that WLS shows consistent
results in all test cases. On the other hand, WLAV is

inconsistent in all the cases. It is interesting to note that
SHGM is inconsistent for small errors in pseudo
measurements and consistent for large errors in pseudo
measurements. The reason is that the measurement set
considered for study is predominantly comprised of the
pseudo measurements, and large error in pseudo
measurements increases the measurement variance (19). Also
the computation of variance in (19) is based on the maximum
error. This results in low normalised residual (jrij) for pseudo
measurements. Owing to this fact the normalised residual
becomes less than the cutoff value avi (16), and the estimator
behaves like WLS. However, this is not always true.
Whenever the normalised residual exceeds the cutoff value,
the estimator becomes inconsistent. It will be shown that for
the 95-bus UK-GDS system, SHGM becomes inconsistent
for these cases of large errors too.

Table 3 shows the performance summary of the 12-bus test
system. Two types of qualities are shown. As expected, the

Figure 3 Variation of E[e] with different Monte Carlo steps

Figure 4 Twelve-bus system estimation error plot for all
state variables: error in true measurements ¼ 3%, error in
pseudo measurements ¼ 50%
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quality of the estimates decreases with the increase in the
error in measurements. This decrease is significant with the
increase in error in the real measurements as compared to
the pseudo measurements.

4.4.2 Ninety-five-bus UK-GDS: The performance of
the estimators was also evaluated on the 95-bus test system
model for all the test cases analysed in the 12-bus test
system. It was observed that in the 95-bus test system also,
400 Monte Carlo steps are sufficient to bring down the
error in E[e] within 1% of the number of states. The
following two cases were considered:

(a) Limited redundancy

In this case, the real measurements were considered to
be available at the main substation. Hence, the voltage
magnitude measurement at bus #1 and power flow
measurements in lines #1–2 and #1–85 were taken as real
measurements. It was observed that in the 95-bus test
system all the estimators were unbiased. However, only

WLS was found to be consistent in all the test cases.
Hence, the consistency plots of WLS in all four test cases
are displayed in Fig. 9. The consistency plot for SHGMis
also shown in Fig. 10 for the test Case 2. It is clear from
Fig. 10 that the SHGM which was consistent in Case 2 in
the 12-bus system no longer remains consistent in larger
systems.

(a) Increased redundancy

In this case, the redundancy was increased by placing
the measurements at DG locations first and then
measurements were placed at optimal locations. The
optimality criterion and details of the measurement
placement appear in [18]. Furthermore, the phasor
measurements were also deployed at optimally selected
buses. The real measurement set in this study consists of
the following measurements:

1. Voltage measurements at buses #1, #18, #19, #20, #21
and #95

Figure 5 Twelve-bus system consistency plot: error in true
measurements ¼1%, error in pseudo measurements ¼20%

Figure 6 Twelve-bus system consistency plot: error in true
measurements ¼ 1%, error in pseudo measurements ¼50%
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2. Line flow measurements in lines #1–2, #1–85, #82–95,
#18–19, #15–17 and #34–35

3. Phasor measurements at buses #19, #20 and #21

The consistency plots for WLS and SHGM with increased
redundancy are shown in Figs. 11 and 12, respectively. The
WLS shows the consistent performance whereas the
SHGM shows the inconsistency in all the simulated cases.

Figure 7 Twelve-bus system consistency plot: error in true
measurements ¼ 3%, error in pseudo measurements ¼20% Figure 8 Twelve-bus system consistency plot: error in true

measurements ¼ 3%, error in pseudo measurements ¼50%

Table 3 Twelve-bus system performance summary

Estimator Real 1%, pseudo 20% Real 1%, pseudo 50%

Bias Consistent/E[e] Quality tr/det Bias Consistent/E[e] Quality tr/det

WLS unbiased consistent/23.13 4.08/199.24 unbiased consistent/23.25 3.7/179.01

WLAV unbiased inconsisten/136.7 3.17/191.46 unbiased inconsistent/80.67 2.26/173.98

SHGM unbiased inconsistent/1033.1 3.86/193.1 unbiased consistent/26.37 3.7/178.28

Real 3%, pseudo 20% Real 3%, pseudo 50%

WLS unbiased consistent/23.85 1.89/198.4 unbiased consistent/22.97 1.81/178.02

WLAV unbiased inconsistent/130.91 1.68/190.53 unbiased inconsistent/72.81 1.45/173.07

SHGM unbiased inconsistent/953.8 1.86/192.37 unbiased consistent/24.1 1.80/177.63
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A very high degree of inconsistency was observed in WLAV,
which is difficult to show graphically.

The performance summaries for both cases are shown in
Tables 4(a) and (b). In both the cases, the quality defined
in (5) gives numerical instability in computations, hence it
does not appear in the tables. Furthermore, the quality for
WLAV estimator is inconsistent and shows negative values.
This is because of very high variance of state estimates that
are unacceptable for SE. In WLS and SHGM, as expected
the qualities decrease with increase in errors in real and

pseudo measurements. The value of E[e] in the case of
SHGM does not converge to the number of states (i.e.
189), which numerically verifies its inconsistency.

It is also important to note that with limited redundancy the
trace qualities defined in (6) are close for both WLS and
SHGM in Case 2 and Case 4. This gives the impression
that SHGM should be consistent for these cases. Since trace
captures the diagonal information of the error covariance
matrix, it can be attributed that inconsistency in SHGM is
mainly due to off-diagonal elements. In case of increased
redundancy there is significant difference in the qualities of
WLS and SHGM in all the test cases. The quality of WLS
is better than the quality of SHGM.

In all the simulated cases only WLS satisfies the three
statistical criteria (bias, consistency and quality) under the
assumption of normal distribution of measurement errors.
It can be concluded that the WLS is a suitable solver for
the DSSE problem.

4.5 Comments on error distribution and
choice of solver

The statistical criteria discussed in this paper depend on the
characteristics of the distribution of measurement errors. The
results presented are based on the assumption that the
measurement errors are normally distributed. Under this
assumption, the WLS satisfies the statistical criteria and
hence was found to be the suitable solver for the SE.
However, this may not be true if the measurement errors
are not normally distributed. For instance if the errors
follow the Laplace distribution [19], the WLAV estimator
gives better performance than WLS and SHGM. The
reason for this is that the WLAV is consistent with the
Laplace distribution and maximisation of log-likelihood of
the Laplace density function results in the WLAV
formulation. Hence, depending on the distribution of the
errors, the corresponding statistical criterion discussed in
Subsection 2.2 can be modified in order to identify the
consistent solver for that distribution.

Figure 9 Ninety-five-bus system consistency plot with
limited redundancy: WLS shows consistency in all test cases

Figure 10 Ninety-five-bus system consistency plot with
limited redundancy: error in true measurements ¼1%,
error in pseudo measurements ¼50%
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In reality, different probabilistic load distributions exist in the
distribution networks and no standard distribution can fit all of
them. Furthermore, the large size of the distribution network
having various probability distributions at different buses
makes accommodating them in a single state estimator

impractical. A more practical approach is to model the actual
probability distributions as a mixture of several Gaussian
distributions (Fig. 13) and apply the WLS state estimator
which is consistent with the normal distribution. This
requires the modelling of the distribution of errors through

Figure 11 Ninety-five-bus system consistency plot with
increased redundancy: WLS shows consistency in all the
test cases

Figure 12 Ninety-five-bus system consistency plot with
increased redundancy: SHGM shows inconsistency in all
the test cases
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Gaussian mixture model (GMM) [20–22]. As shown in
Fig. 13, the GMM represents an arbitrary distribution as a
weighted combination of several Gaussian components.
Mathematically, a GMM having Mc mixture components
with mean and variance of kth component as mk and s2

k can
be written as

f (x) ¼
XMc

k¼1

wkN (mk, s
2
k )(x) and

XMc

k¼1

wk ¼ 1 (20)

The expectation maximisation algorithm [20–22] is used to
obtain the parameters (wk, mk, s

2
k ) of the GMM.

In transmission systems, all the estimators work well
because of very high redundancy and thus the statistical
measures to evaluate the performance are not required. For
example, a highly erroneous measurement is treated as a
bad data by the WLAV estimator and a redundant
measurement is always available to replace this. But in
distribution systems, the measurements are mainly the
pseudo measurements with very limited redundancy. Since
pseudo measurements are derived from the historical load
profiles and customer behaviour, they are highly erroneous.
This is why the statistical framework is required to identify
the suitable solver for the DSSE.

5 Conclusion
The performance evaluation of SE techniques shows that
the existing solution methodology of WLAV and SHGM
cannot be applied to the distribution systems. In order to
obtain the consistent and good quality estimate, significant
modifications are required in these algorithms. WLS gives
consistent and better quality performance when applied to
distribution systems. Hence, WLS is found to be a suitable
solver for the DSSE problem.

Table 4 Ninety-five-bus UK-GDS performance summary

Estimator Real 1%, pseudo 20% Real 1%, pseudo 50%

Bias Consistent/E[e] Quality tr/det Bias Consistent/E[e] Quality tr/det

(a) Limited redundancy

WLS unbiased consistent/190.02 6.63/– unbiased consistent/188.16 6.24/–

WLAV unbiased inconsistent/1 252/– unbiased inconsistent/1 244.42/–

SHGM unbiased inconsistent/3.06 � 104 6.46/– unbiased inconsistent/2.53 � 105 6.16/–

Real 3%, pseudo 20% Real 3%, pseudo 50%

WLS unbiased consistent/189.84 4.61/– unbiased consistent/190.23 4.41/–

WLAV unbiased Inconsistent/1 245.18/– unbiased inconsistent/1 241.12/–

SHGM unbiased Inconsistent/2.89 � 104 4.75/ 2 unbiased inConsistent/2.27 � 105 4.4/–

(b) Increased redundancy

Real 1%, pseudo 20% Real 1%, pseudo 50%

WLS unbiased consistent/190 8.86/– unbiased consistent/188.3 8.75/–

WLAV unbiased inconsistent/1 255.65/– unbiased inconsistent/1 263.74/–

SHGM unbiased inconsistent/1.65 � 109 6.70/– unbiased inconsistent/1.82 � 109 6.35/–

Real 3%, pseudo 20% Real 3%, pseudo 50%

WLS unbiased consistent/188.65 6.85/– unbiased consistent/189.23 6.75/–

WLAV unbiased inconsistent/1 243.73/– unbiased inconsistent/1 249.88/–

SHGM unbiased inconsistent/6.58 � 109 4.32/– unbiased inconsistent/1.0 � 1010 4.28/–

Figure 13 Gaussian mixture approximation of the density
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The WLS works well if the noise characteristics are
known. In the absence of this knowledge either the WLS
needs to be modified or a new class of algorithms need to
be introduced. Furthermore, with growing interest in the
distribution automation, new DSSE techniques are
expected to be introduced in the future. However, any
modification in existing techniques or introduction of new
algorithms should qualify some statistical criteria because of
limited number of measurements. This paper highlights
some important statistical criteria against which a SE
algorithm should be tested to assess its suitability to DSSE.
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8 Appendix
8.1 Computation of a for various
estimators

The fact that normalised measurement residual r is normally
distributed with zero mean and unit variance can be used to
compute a for the state estimators discussed in Section 3.

8.1.1 Weighted least-squares:

c(r) ¼ r, c0(r) ¼ 1 (21)
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E[c2(r)] ¼
1ffiffiffiffiffiffi
2p
p

ð1

�1

r2e�(1=2)r2

dr ¼ Var(r) ¼ 1 (22)

E[c0(r)] ¼
1ffiffiffiffiffiffi
2p
p

ð1

�1

e�(1=2)r2

dr ¼ 1 (23)

a ¼
E[c2(r)]

(E[c0(r)])2
¼ 1 (24)

8.1.2 Weighted least absolute value estimator:

c(r) ¼ sgn(r), c0(r) ¼ 2d(r) (25)

E[c2(r)] ¼
1ffiffiffiffiffiffi
2p
p

ð1

�1

(sgn(r))2e�(1=2)r2

dr ¼ 1 (26)

We use the fact thatð1

�1

d(t � t0)f (t)dt ¼ f (t0) (27)

in the following expression

E[c0(r)] ¼
1ffiffiffiffiffiffi
2p
p

ð1

�1

2d(r)e�(1=2)r2

dr ¼

ffiffiffiffi
2

p

r
(28)

a ¼
E[c2(r)]

(E[c0(r)])2
¼

p

2
(29)

8.1.3 Schweppe huber generalised M:

c(r) ¼
r if jrj � av

av sgn(r) otherwise



(30)

c0(r) ¼
1 if jrj � av

2avd(r) ¼ 0 otherwise



(31)

E[c2(r)] ¼
1ffiffiffiffiffiffi
2p
p

ð�av

�1

(av sgn(r))2e�(1=2)r2

dr

þ
1ffiffiffiffiffiffi
2p
p

ðav

�av

r2e�(1=2)r2

dr

þ
1ffiffiffiffiffiffi
2p
p

ð1

av

(av sgn(r))2e�(1=2)r2

dr

(32)

By symmetry of the distribution the above equation can be
expressed as

¼
2ffiffiffiffiffiffi
2p
p

ð�av

�1

(av sgn(r))2e�(1=2)r2

dr þ
2ffiffiffiffiffiffi
2p
p

ðav

0

r2e�(1=2)r2

dr

(33)

¼ (2a2v2
F(�av)þ

2ffiffiffiffiffiffi
2p
p

ðav

0

r2e�(1=2)r2

dr) (34)

where F is the cumulative probability function. The integral
term in the above equation is given by

2ffiffiffiffiffiffi
2p
p

ðav

0

r2e�(1=2)r2

dr ¼ �

ffiffiffiffi
2

p

r
ave�(a2v2=2)

þ (2F(av)� 1)

(35)

Using the relation F(�av) ¼ 1�F(av) and substituting
(35) in to (34), we obtain

E[c2(r)] ¼ 1�

ffiffiffiffi
2

p

r
ave�(a2v2=2)

þ 2(a2v2
� 1)(1�F(av))

(36)

E[c0(r)] ¼
1ffiffiffiffiffiffi
2p
p

ðav

�av

e�(1=2)r2

dr ¼ 2F(av)� 1 (37)

In this case a depends on parameters ‘a ’ and ‘v’, that is, if
a ¼ 1.5 and v ¼ 1, the value of a is

a ¼
E[c2(r)]

(E[c0(r)])2
¼

0:7785

(0:8664)2
¼ 1:0371 (38)
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