

How to use the AVR USART to implement serial links

The USART (or UART) has bidirectional serial data transfer. It is almost impossible to use

this efficiently without interrupts. Here are some guidelines, to help you understand the

sample code.

 Check the clock frequency & that the baud rate required can be achieved. Error of <1%

is never a problem, <2% will work but is undesirable, 5% will not work. Note that this

assumes that the other end of the link has perfect timing, which will normally be true for a

PC or USB serial port. If the other end of the link is another microcontroller check its

exact baud rate and try to match that. Check the serial link configuration which must

match the other end - most common is 8 bit, no parity, 1 stop bit.

 If possible use RTS/CTS handshake lines so that flow control is automatic. Otherwise

characters may be lost due to over-runs. If you use software flow control (xon/xoff) these

two ASCII characters cannot be used as data. Thus binary data transmission is not

possible without encoding.

 Check your hardware connections. Microprocessors & PCs will have TXD serial output &

RXD serial input. Devices that expect to be connected to computers (Zigbit modules) will

have input TXD & output RXD. Normally therefore you connect TXD to TXD, RXD to

RXD. However to connect a microprocess to a PC you must have RXD -> TXD, TXD-

>RXD. Similarly RTS/CTS must be connected either right way round or reversed. Always

check datasheets.

 Use an interrupt handler to process received data. If you use synchronous (non-interrupt)

transmission then the application will be unable to do anything else when data is being

transmitted. If this is a problem use an interrupt handler also for transmitted data.

 How to send & receive characters:

o Use Rx complete interrupt/status to determine when to load next received byte.

This interrupt (or status bit) is automatically cleared by reading the USART data

buffer.

o Use UDR empty interrupt/status to determine when to output next transmitted

byte. This interrupt or status bit is automatically cleared by writing to the USART

status buffer.

o Don't use Tx complete interrupt/status since it determines when last byte has

actually finished transmission. Normally it is not useful to know this.

 Transmission using interrupts requires care because if no characters are available to

transmit the ISR must return without loading the USART data buffer, and therefore

switch off the interrupt. When a new character becomes available the interrupt will not

happen again, and no characters are transmitted. The solution is to switch interrupts on

again whenever a character is transmitted. The sample code can be used as a template

since it solves this problem correctly.

 Reception using interrupts is easier. Often character processing may actually be done

within the interrupt handler function. Otherwise, if a buffer is used, the interrupt handler

adds characters to a memory buffer and a non-interrupt receive function (as below)

extracts them. See sample code.

 The buffers used in memory for transmitted and/or received characters should for

complete generality be circular buffers implemented using an array with indexes for first

and last stored character which wrap around when the reach the end. Note that it is

necessary to store the number of characters in the buffer as well to distinguish between

the full & empty cases.

 A simpler solution is available when the length of transmitted or received messages is

known and when the transmission (or reception) of messages need not overlap their

generation/processing. In that case a non-circular memory buffer can be used to hold a

single message.

Sample code for USART
See the next page for some sample code (given with working project in avrcode.zip) which

implements UART Rx & Tx via interrupts. CPU used here is AtMega88p (updated low

voltage Atmega8) code will port to any CPU with USART - but may need to change names

of registers (e.g. UCSR0B->UCSRB). This code uses both Rx & Tx interrupts. Baud rate

38400, 8 data bits, no parity, 1 stop bit. Transmit characters are stored in a circular queue.

Receive characters are handled by user-defined routine process_rx_char() which is called

from the receive interrupt and must not be too long. If long actions are needed in response to

received data these should be implemented in non-interrupt code which polls a global

memory location set from interrupt code, as below:

void process_rx_char(char ch)

{

 static char rxbuffer[RXBUFFERSIZE];

 static uint8_t rxBufferIndex=0;

 rxBuffer[rxBufferIndex++] = ch; /* put next char in buffer */

 if <received message is complete> { /* detemined from length of content */

 if (NextMessageReady == TRUE) { /* over-run error */ };

 /* transfer data from rxBuffer[] to MessageBuffer[] */

 rxBufferIndex = 0; /* get ready for next character

 NextMessageReady = TRUE; /* signal non-interrupt code */

 }

}

/* non-interrupt code */

static char MessageBuffer[RXBUFFERSIZE];

static uint8_t NextMessageReady;

{

 /* Initialise */

 NextMessageReady = FALSE;

 /* loop processing received messages */

 for (;;) {

avrcode.zip

 while (NextMessageReady = FALSE); /* wait for next message */

 /* process next message in MessageBuffer */

 NextMessageReady = FALSE; /* reset handshake variable */

 /* do other stuff */

}

Sample Code (available online in avrcode.zip)
#include <avr/io.h>

#include <avr/interrupt.h>

#include <macros.h>

#include <uart.h>

#define QUEUE_FULL_ERROR 1

#define OK 0

#define TX_BUFF_SIZE 20

#define Q_INCR(x) x = x+1; if (x == TX_BUFF_SIZE) x = 0;

#define UDRIE_on() UCSR0B = 0x98 | BIT(UDRIE0)

#define UDRIE_off() UCSR0B = 0x98

#define NCTS (PORTB & 0x04)

/* data structures for queue */

struct q_t {

unsigned char head_pos;

unsigned char empty_pos;

unsigned char length;

char buffer[TX_BUFF_SIZE];

};

static struct q_t txq;

//initialise q structures

static void usart_q_init(void)

{

 txq.head_pos=0;

 txq.empty_pos=0;

 txq.length=0;

}

//USART initialize

// desired baud rate: 38400

// actual: baud rate:38462 (0.2%)

void usart_init(void)

{

 UCSR0B = 0x00; //disable while setting baud rate

 UCSR0A = 0x02;

 UCSR0C = 0x06;

 UBRR0L = 0x0C; //set baud rate lo

 UBRR0H = 0x00; //set baud rate hi

 UCSR0B = 0x98;

 EIMSK = 0x01; //enable ext interrupt 0

 EIFR = 0x02; // falling edge

 usart_q_init();

}

//send char ch using interrupts

//on exit interrupts will be enabled

//regardless of state on entry

unsigned char usart_send(char ch)

{

 unsigned char len;

 CLI();//disable interrupts

 if ((BIT(UDRE0) & UCSR0A) && !NCTS) {

 // buffer is empty so send now

 UDR0 = ch;

 return OK;

 }

 //otherwise check queue full

 if ((len=txq.length) == TX_BUFF_SIZE) {

 //return with error if full

 SEI(); //enable interrupts

 return QUEUE_FULL_ERROR;

 }

 //add ch to buffer

 txq.buffer[txq.empty_pos] = ch;

 Q_INCR(txq.empty_pos);

 txq.length = len+1;

 if (!NCTS) UDRIE_on(); //switch INT on

 SEI();//enable interrupts

 return OK;

}

//USART RX interrupt handler

ISR(USART_RX_vect){

 //uart has received a character in UDR

 // process the received char right away

 process_rx_char(UDR0);

}

//USART TX interrupt handler

ISR(USART_UDRE_vect)

{

 //character transferred to shift register

 //so UDR is now empty

 //try to get char from tx buffer

 if (txq.length != 0) {

 //get char and send it

 UDR0 = txq.buffer[txq.head_pos];

 Q_INCR(txq.head_pos);

 txq.length = txq.length-1;

 } else {

 UDRIE_off(); // switch off

interrupt since no data

 }

}

// INT0 Handler

ISR(INT0_vect)

{

 if (NCTS) {

 UDRIE_off();

avrcode.zip

 EIFR &= ~0x01;

 }

 else {

 UDRIE_on();

 EIFR |= 0x01;

 }

}

